
ARTICLE OPEN

Rare deleterious germline variants and risk of lung cancer
Yanhong Liu1,29, Jun Xia 2,29, James McKay3, Spiridon Tsavachidis1, Xiangjun Xiao2, Margaret R. Spitz1, Chao Cheng 1,2,
Jinyoung Byun1,2, Wei Hong2, Yafang Li1,2, Dakai Zhu2, Zhuoyi Song2, Susan M. Rosenberg4, Michael E. Scheurer1,5,
Farrah Kheradmand 1,6, Claudio W. Pikielny7, Christine M. Lusk8, Ann G. Schwartz8, Ignacio I. Wistuba9, Michael H. Cho 10,
Edwin K. Silverman10, Joan Bailey-Wilson 11, Susan M. Pinney12, Marshall Anderson12, Elena Kupert12, Colette Gaba13,
Diptasri Mandal14, Ming You15, Mariza de Andrade16, Ping Yang17, Triantafillos Liloglou18, Michael P. A. Davies 18, Jolanta Lissowska19,
Beata Swiatkowska20, David Zaridze21, Anush Mukeria21, Vladimir Janout22, Ivana Holcatova23, Dana Mates24, Jelena Stojsic 25,
Ghislaine Scelo3, Paul Brennan 3, Geoffrey Liu26, John K. Field 18, Rayjean J. Hung 27, David C. Christiani 28 and
Christopher I. Amos 1,2✉

Recent studies suggest that rare variants exhibit stronger effect sizes and might play a crucial role in the etiology of lung cancers
(LC). Whole exome plus targeted sequencing of germline DNA was performed on 1045 LC cases and 885 controls in the discovery
set. To unveil the inherited causal variants, we focused on rare and predicted deleterious variants and small indels enriched in cases
or controls. Promising candidates were further validated in a series of 26,803 LCs and 555,107 controls. During discovery, we
identified 25 rare deleterious variants associated with LC susceptibility, including 13 reported in ClinVar. Of the five validated
candidates, we discovered two pathogenic variants in known LC susceptibility loci, ATM p.V2716A (Odds Ratio [OR] 19.55, 95%CI
5.04–75.6) and MPZL2 p.I24M frameshift deletion (OR 3.88, 95%CI 1.71–8.8); and three in novel LC susceptibility genes, POMC c.
*28delT at 3′ UTR (OR 4.33, 95%CI 2.03–9.24), STAU2 p.N364M frameshift deletion (OR 4.48, 95%CI 1.73–11.55), and MLNR p.Q334V
frameshift deletion (OR 2.69, 95%CI 1.33–5.43). The potential cancer-promoting role of selected candidate genes and variants was
further supported by endogenous DNA damage assays. Our analyses led to the identification of new rare deleterious variants with
LC susceptibility. However, in-depth mechanistic studies are still needed to evaluate the pathogenic effects of these specific alleles.
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INTRODUCTION
Lung cancer (LC), the leading cause of cancer mortality in the US,
has recently shown substantial drops in mortality, largely
attributed to reduced smoking rates and improvement in new
treatments such as immunotherapy1. Prior genome-wide associa-
tion studies (GWAS) identified novel genetic factors influencing LC
risk, which are sometimes modulated by smoking behavior2.
Notably, in the 15q25.1 region that shows the most significant and
consistent genetic signal, a missense p.D398N and a 22-bp
deletion (del) in the core promoter region of CHRNA5 have been
identified that affect the function and expression3,4. Carriers of
these variants find quitting smoking more difficult than non-
carriers5 and may benefit from a targeted smoking cessation
intervention6.
Previous studies have estimated heritability of LC to be 18%7.

Recent genetic studies suggest that rare variants (minor allele
frequency [MAF] < 1%) that are functionally deleterious, exhibit far

larger effect sizes than common variants8–10 as they display signs
of stronger selective pressure11,12, and could account for missing
heritability unexplained by common variants11. Fewer than 3% of
protein-coding single nucleotide variants (SNVs) corresponding to
approximately 300 genes per genome are predicted to result in
loss of protein function (LoF) through the introduction of stop-
gain, frameshift, or the disruption of an essential splice site13.
Insertions (ins) or deletions (indels) have been understudied,
though they are the second most abundant source of human
genetic variation. Selected indels have been identified as playing a
key role in causing LC, such as p.E746_A750del in EGFR14–16.
Supporting the hypothesis that deleterious mutations will show

lower MAF are recent identifications of several rare missense
variants that have a moderate-to-large effect on LC risk, for
example, PARK2 p.R275W (OR 5.24)17, BRCA2 p.K3326X (OR 2.47),
CHEK2 p.I157T (OR 0.38)18, LTB p.L87F (OR 7.52), P3H2 p.Q185H (OR
5.39)19, DBH p.V26M20, and ATM p.L2307F (OR 8.82)21. Because of
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the stronger evolutionary pressure and weak linkage disequili-
brium (LD) with common SNPs used in GWAS, finding these rare
variants through population-based studies can be challenging22.
To maximize the potential for the detection of large-effect, rare
deleterious variants (SNVs and small indels ≤21 bp), we employed
whole exome sequencing (WES) plus targeted sequencing on
healthy controls and selected high-risk LC cases enriched with the
highest genetic risk of LC, for example, early-onset or family
history of LC (FHLC)7,23,24.

RESULTS
Demographics of study subjects
As shown in Table 1, the vast majority of subjects in the discovery
study ─ Transdisciplinary Research in Cancer of the Lung (TRICL;
1,045 LCs vs. 885 controls) ─ and the validation sets (26,803 LCs
and 555,107 controls) were primarily of European-descent
(Supplementary Fig. 1). LC cases were significantly more likely to
be smokers and with higher pack-years than controls (P-value <
0.0001). The TRICL and Genetic Epidemiology of LC Consortium
(GELCC) cases were enriched for having FHLC.

Identification of rare and deleterious variants in the TRICL
discovery set
In the discovery set, a total of 2,182,753 variants were detected.
Applying a three-step filtering method based on allele frequency
(MAF < 1% in non-Finnish European [NFE] population from the
Genome Aggregation Database [gnomAD]), variant class (mis-
sense, protein-truncating and regulatory), and functional effects
(predicted deleterious and or with clinical significance from
ClinVar), we identified 67,470 rare and putatively deleterious
variants: 63% missense, 16% frameshift (fs), 12% in-frame indels,
6% regulatory (untranslated region [UTR] and splice acceptor/
donor), and 3% stop-gain. Single variant association analysis
identified 75 potential candidates.
Given the known challenge of excessive false-positive indel

detection rates caused by the high frequency of homopolymer-
associated sequencing errors25–28, we subjected these 75 potential
candidates to additional filtering and manual inspection using
Genome Browser (Supplementary Table 1). Twenty-five of the 75
were high-confidence putative candidates (two SNVs, four ins, and
19 del). Supplementary Fig. 2 shows the variant visualization map
for the candidates and variant carriers (read alignment and depth).
Thirteen out of the 25 candidates (in 24 genes) reported clinical
significance in ClinVar, and eight were classified as pathogenic.
Also, 5/24 genes were mapped to known LC-GWAS loci, such as
3q28 TP6329, 5q31.1 TXNDC1530, 11q22.3 ATM21, 11q23.3 MPZL231,
and 22q12.1 CHEK218. Three mapped in known GWAS loci for
COPD/ PF (pulmonary function): 1p34.3 BMP8A32,33, 1p36.31
PHF1332, and 14q23.1 TALPID3/KIAA058634.
We next assessed the dose-effect of the 25 candidates: 16 were

enriched in LCs (risk-conferring alleles) and 9 were enriched in
controls (protective alleles). Compared with subjects with zero
risk- and protective-alleles, the groups carrying one, and two risk-
alleles (5 LCs) showed a progressively increased risk, whereas
groups carry one, and two protective-alleles (6 controls) demon-
strated a gradually reduced risk (Supplementary Table 2). All 6
controls harbored MOB3A p.F69_I75del, whereas 4/5 LCs harbored
STAU2 p.N364M fs*67del.
Studying the demographics of the mutation carriers, there was no

significant difference in smoking (status and pack-years) or FHLC
between carriers and non-carriers. Notably, 5/6 two-protective-
alleles carriers were male, whereas 4/5 two-risk-alleles carriers were
female and had adenocarcinoma (AD). Overall, age did not differ
significantly between carriers and non-carriers (Supplementary
Fig. 3). However, in LC cases, onset-age in risk-allele carriers (54 yrs
for two-risk-alleles carriers, 62 yrs for one-risk-allele carriers) were

significantly younger than the protective-allele carriers (69 yrs;
Supplementary Table 2).
Further gene-environment (G×E) interaction analysis showed

that two variants interacted with smoking behavior (Supplemen-
tary Table 1). Specifically, the risk MLNR p.Q334V fs*3del interacted
with pack-years (P-value 0.0035); the protective-effect associated
with the MOB3A p.F69_I75del is substantial and significant among
males (10/11 control carriers were male, whereas 0/2 LCs carriers
were male; P-value 0.042), smokers (6/11 control carriers were
smokers, whereas 0/2 LCs carriers were smokers; P-value 0.016),
and pack-years (P-value 0.0036). We also identified that the
protective variant TXNDC15 p.E9G fs*68del interacted with FHLC,
as 5/7 of LC carriers with FHLC, compared to 0/21 controls (P-value
0.035).
We subsequently conducted gene-based rare variant burden

tests for the 24 genes harboring potential candidates, five genes,
namely, MLNR, CCDC105, BMP8A, MME, and NPHP3, showed
suggestive associations (Table 2). We also performed exome wide
gene-based tests, however, none showed strong association after
multiple testing corrections (Supplementary Fig. 4).

Meta-analyses of the discovery and validation sets
In the seven validation datasets, of the 25 candidates, 100% were
covered by the gnomAD, 22 (88%) in TCGA, 16 (64%) in
COPDGene, nine (36%) in GELCC, and nine (36%) were covered
in one of the three case–control studies (OncoArray, Affymetrix,
and UKB) with genotyping data. Table 3 summarizes the top five
candidates with consistent associations from the meta-analysis.
The topmost risk-conferring variant is a missense SNV, p.

V2716A, in the phosphatidylinositol 3-kinase (PI3K) catalytic
domain of ATM (Ataxia telangiectasia mutated; OMIM 607585,
UniProt Q13315). This pathogenic variant (rs587782652) is
exceedingly rare in the gnomAD, with MAF 0.0021% and
0.0054% in non-cancer controls and NFE population, respectively.
In our combined datasets, this variant presented in 0.05% of LCs
and 0.003% controls, with remarkably high effect sizes (OR 19.55,
95%CI 5.04–75.6; P-value 1.7e-05). LC carriers of this variant were
predominately enriched in smokers (8/9 carriers), AD (7/9 carriers),
and early-onset (6/9 carriers; mean 55 yrs). Further, four additional
rare deleterious variants were observed in ATM (Fig. 1 and
Supplementary Table 3). No LD is present among these variants
and the candidate p.V2716A (Supplementary Table 4).
The second risk variant is c.*28delT in the 3′ UTR of POMC (Pro-

opiomelanocortin; OMIM 176830, UniProt # P01189). The MAF of
this 2 bp del (rs756770132) were 0.086%/0.17% in gnomAD non-
cancer/NFE controls; while in our dataset presented in 0.66% of
LCs and 0.15% of controls, conferring a 4-fold risk for carriers (OR
4.33, 95%CI 2.03–9.24; P-value 0.00015). Although reported as VUS
in ClinVar, this 3′ UTR del is located in a critical site
computationally predicted to be targets of several miRNAs by
the TargetScan35, including hsa-miR-149-3p and hsa-mir-625-5p.
We also observed four additional rare deleterious variants in the
TRICL set (Fig. 1 and Supplementary Table 3).
The third novel risk variant is p.N364M fs*67del in STAU2

(Staufen homolog 2; OMIM 605920, UniProt Q9NUL3). This del
(rs746501298) is very rare in gnomAD (MAF 0.011%/0.0027% in
non-cancer/NFE population controls), but presented in 1.02% of
LCs and 0.02% of non-cancer controls (OR 4.48, 95%CI 1.73–11.55;
P-value 0.0019). It was predicted to disrupt the double-stranded
RNA-binding motif (DSRM; Fig. 1) which plays a critical role in RNA
editing. This del is also reported in the Catalogue of Somatic
Mutations In Cancer (COSMIC, # COSM253104).
The fourth and fifth variants are two pathogenic, truncating

deletions ─ p.I24M fs*22del (rs752672077) in MPZL2 (Myelin protein
zero-like protein 2, or Epithelial v-like antigen 1 [EVA1]; OMIM
604873, UniProt O60487), and p.Q334V fs*3del (rs563947699) in
MLNR (Motilin receptor; OMIM 602885, UniProt O43193) ─ with

Y. Liu et al.

2

npj Precision Oncology (2021)    12 Published in partnership with The Hormel Institute, University of Minnesota

1
2
3
4
5
6
7
8
9
0
()
:,;



Ta
bl
e
1.

B
as
ic

ch
ar
ac
te
ri
st
ic
s
o
f
LC

ca
se
s
an

d
co

n
tr
o
ls
in

th
e
d
is
co

ve
ry

an
d
va
lid

at
io
n
s
se
ts
.

D
is
co

ve
ry

Va
lid

at
io
n
#

C
h
ar
ac
te
ri
st
ic
s

TR
IC
L

G
EL
C
C

C
O
PD

G
en

e
TC

G
A

g
n
o
m
A
D

O
n
co

A
rr
ay

A
ff
ym

et
ri
x

U
K
B

Pl
at
fo
rm

W
ES

W
ES

W
ES

W
ES

W
ES

+
W
G
S

G
en

o
ty
p
in
g

Ex
o
m
e
ar
ra
y

G
en

o
ty
p
in
g

N
(%

)&
LC

C
as
e

n
=
10

45
C
o
n
tr
o
l

n
=
88

5
LC

ca
se

n
=
38

0
C
o
n
tr
o
ls

n
=
31

8
LC

ca
se
s

n
=
10

15
C
o
n
tr
o
ls

n
=
13

4,
18

7
LC

ca
se
s

n
=
17

,8
78

C
o
n
tr
o
ls

n
=
13

,4
25

LC
ca
se

n
=
53

64
C
o
n
tr
o
ls

n
=
57

24
LC

C
as
e

n
=
21

66
C
o
n
tr
o
ls

n
=
40

1,
45

3

Et
h
n
ic
it
y

P
<
0.
00

01
P
<
0.
00

01

W
h
it
e

90
9
(8
7%

)
83

0
(9
4%

)
37

2
(9
8%

)
31

8
(1
00

%
)

74
2
(7
3%

)
94

,1
34

(7
0%

)
13

,8
76

(7
8%

)
11

,0
11

(8
2%

)
30

86
(5
8%

)
35

50
(6
2%

)
20

94
(9
7%

)
37

5,
89

4
(9
4%

)

O
th
er
†

13
6
(1
3%

)
55

(6
%
)

6
(2
%
)

0
27

3
(2
7%

)
40

,0
53

(3
0%

)
21

0
(1
%
)

12
8
(1
%
)

62
5
(1
2%

)
65

2
(1
1%

)
65

(3
%
)

24
,0
55

(6
%
)

A
g
e,

yr
.

P
=
0.
00

6
P
<
0.
00

01

M
ea
n
(r
an

g
e)

63
(2
4–

91
)

61
(2
0–

90
)

64
(3
0–

87
)

63
(5
5–

80
)

65
(3
0–

90
)

54
(1
8–

90
)

64
(1
9–

95
)

62
(1
8–

97
)

61
(3
0–

95
)

59
(3
1–

91
)

62
(4
0–

70
)

56
(3
7–

73
)

<
60

yr
.

41
8
(4
0%

)
35

6
(4
0%

)
10

2
(2
7%

)
88

(2
8%

)
21

4
(2
1%

)
–

60
36

(4
3%

)
53

03
(4
0%

)
23

35
(4
3%

)
30

63
(5
3%

)
62

4
(2
9%

)
24

2,
68

7
(6
0%

)

Se
x

P
<
0.
00

01

M
al
e

61
4
(5
9%

)
51

5
(5
8%

)
23

2
(6
1%

)
17

2
(5
4%

)
56

3
(5
9%

)
73

,3
70

(5
5%

)
11

,1
47

(6
2%

)
82

74
(6
2%

)
29

30
(5
5%

)
31

25
(5
5%

)
11

82
(5
5%

)
18

6,
08

3
(4
6%

)

Fe
m
al
e

43
1
(4
1%

)
37

0
(4
2%

)
17

1
(4
5%

)
14

6
(4
6%

)
45

2
(4
1%

)
60

,8
17

(4
5%

)
67

31
(3
8%

)
51

51
(3
8%

)
24

34
(4
5%

)
25

99
(4
5%

)
98

4
(4
5%

)
21

5,
37

0
(5
4%

)

Sm
o
ki
n
g

P
<
0.
00

01
P
<
0.
00

01
P
<
0.
00

01
P
<
0.
00

01

N
ev
er

12
5
(1
2%

)
30

8
(3
5%

)
31

(8
%
)

0
17

3
(1
7%

)
–

17
20

(1
0%

)
41

52
(3
1%

)
57

2
(1
1%

)
17

26
(3
0%

)
20

3
(1
0%

)
23

6,
24

6
(5
9%

)

Ev
er

91
8
(8
8%

)
57

6
(6
5%

)
34

6
(9
1%

)
31

8
(1
00

%
)

74
2
(7
3%

)
–

15
,8
89

(8
9%

)
89

98
(6
7%

)
46

75
(8
7%

)
39

72
(6
9%

)
19

45
(9
0%

)
16

3,
22

6
(4
1%

)

M
ea
n
PY

(r
an

g
e)

42
(0
–
19

6)
23

(0
–
13

3)
46

(0
–
16

5)
54

(1
0–

97
)

42
(0
–
15

4)
–

46
(0
–
31

5)
33

(0
–
26

0)
45

(0
–
23

1)
34

(0
–
21

8)
40

(0
–
22

0)
23

(0
–
30

1)

FH
LC

P
<
0.
00

01
P
<
0.
00

01

Ye
s

50
6
(4
8%

)
72

(8
%
)

12
2
(3
3%

)
–

–
–

–
–

–
45

7
(2
1%

)
49

,1
04

(1
2%

)

N
o

35
9
(3
4%

)
30

6
(3
5%

)
25

8
(6
7%

)
–

–
–

–
–

–
17

09
(7
9%

)
35

2,
34

9
(8
8%

)

H
is
to
lo
g
y

A
D

45
9
(4
4%

)
–

18
2
(4
8%

)
–

57
7
(5
7%

)
–

65
68

(3
7%

)
–

21
06

(3
9%

)
–

78
1
(3
6%

)
–

SC
C

34
2
(3
3%

)
–

11
8
(3
1%

)
–

43
8
(4
3%

)
–

42
84

(2
4%

)
–

11
31

(2
1%

)
–

46
1
(2
1%

)
–

O
th
er

24
4
(2
3%

)
–

80
(2
1%

)
–

0
–

70
26

(3
9%

)
–

21
27

(4
0%

)
–

92
4
(4
3%

)
–

TR
IC
L
Tr
an

sd
is
ci
p
lin

ar
y
R
es
ea
rc
h
in

C
an

ce
r
o
f
th
e
Lu

n
g
,W

ES
w
h
o
le
-e
xo

m
e
se
q
u
en

ci
n
g
,W

G
S
w
h
o
le
-g
en

o
m
e
se
q
u
en

ci
n
g
,L
C
lu
n
g
ca
n
ce
r,
PY

p
ac
k-
ye
ar
,F
H
LC

fa
m
ily

h
is
to
ry

o
f
LC

(fi
rs
t
d
eg

re
e)
,A

D
ad

en
o
ca
rc
in
o
m
a,

SC
C
sq
u
am

o
u
s
ce
ll
ca
rc
in
o
m
a.

&
N
u
m
b
er
s
d
o
n
o
t
ad

d
u
p
d
u
e
to

m
is
si
n
g
d
at
a.

†
O
th
er

et
h
n
ic
it
ie
s
in

TR
IC
L
(o
n
e
A
fr
ic
an

co
n
tr
o
ls
u
b
je
ct

an
d
19

0
u
n
kn

o
w
n
),
TC

G
A
(8
%

A
fr
ic
an

A
m
er
ic
an

2%
Ea
st
A
si
an

,a
n
d
17

%
u
n
kn

o
w
n
),
g
n
o
m
A
D
(8
.8
%

A
fr
ic
an

,7
.2
%

Ea
st
A
si
an

,1
1.
4%

So
u
th

A
si
an

,a
n
d
2.
5%

o
th
er
).
G
en

et
ic

an
ce
st
ry

an
al
ys
is
o
f
TR

IC
L
su
b
je
ct
s
sh
o
w
s
m
o
st

o
f
th
e
su
b
je
ct
s
o
f
th
e
“u
n
kn

o
w
n”

ra
ce

w
er
e
lo
ca
te
d
b
et
w
ee

n
th
e
Eu

ro
p
ea
n
-
an

d
A
si
an

-a
n
ce
st
ry

cl
u
st
er
s
(S
u
p
p
le
m
en

ta
l
Fi
g
.1

).
G
en

et
ic

an
ce
st
ry

an
al
ys
is
o
f
TC

G
A
p
at
ie
n
ts

sh
o
w
s
th
e
va
st

m
aj
o
ri
ty

o
f
su
b
je
ct
s
w
it
h
“u
n
kn

o
w
n
”
ra
ce

w
er
e
p
ri
m
ar
ily

g
en

et
ic

Eu
ro
p
ea
n
an

ce
st
ry

(i.
e.
,9

0%
TC

G
A
-L
C
s
w
er
e
g
en

et
ic
al
ly

Eu
ro
p
ea
n
s)
8
2
.

#T
h
e
va
lid

at
io
n
se
ts

in
cl
u
d
e
26

,8
03

LC
s
an

d
55

5,
10

7
co

n
tr
o
ls
:(
1)

G
en

et
ic
Ep

id
em

io
lo
g
y
o
f
LC

(G
EL
C
C
)
W
ES

d
at
a
fo
r
38

0
LC

s
(2
58

sp
o
ra
d
ic
an

d
12

2
FL
C
w
er
e
se
le
ct
ed

fr
o
m

h
ig
h
-r
is
k
LC

fa
m
ili
es

w
it
h
at

le
as
t
tw

o
fi
rs
t-
d
eg

re
e
re
la
ti
ve

s
af
fe
ct
ed

w
it
h
LC

);
(2
)
C
O
PD

G
en

e
W
ES

d
at
a
fo
r
31

8
co

n
tr
o
ls

w
it
h
n
o
rm

al
lu
n
g
fu
n
ct
io
n
;
(3
)
TC

G
A

(T
h
e
C
an

ce
r
G
en

o
m
e
A
tl
as
)
g
er
m
lin

e
W
ES

d
at
a
fo
r
10

15
LC

s;
(4
)
G
n
o
m
A
D

(g
en

o
m
e

ag
g
re
g
at
io
n
d
at
ab

as
e,

v2
.1
)
W
ES

an
d
W
G
S
d
at
a
fo
r
13

4,
18

7
n
o
n
-c
an

ce
r
co

n
tr
o
ls
(e
xc
lu
d
ed

in
d
iv
id
u
al
s
fr
o
m

ca
n
ce
r
co

h
o
rt

st
u
d
ie
s,
su
ch

as
th
e
TC

G
A
co

h
o
rt
).
(5
)
O
n
co

A
rr
ay

g
en

o
ty
p
in
g
d
at
a
fo
r
17

,8
78

LC
s
vs
.

13
,4
25

co
n
tr
o
ls
;
(6
)
A
ff
ym

et
ri
x
ex
o
m
e
ar
ra
y
d
at
a
fo
r
53

64
LC

s
vs
.5

72
4
co

n
tr
o
ls
;
(7
)
U
K
B
io
b
an

k
(U
K
B
)
g
en

o
ty
p
in
g
d
at
a
fo
r
21

66
LC

s
vs
.4

01
,4
53

co
n
tr
o
ls
.

Y. Liu et al.

3

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2021)    12 



effects sizes of 3.88 (95% CI 1.71–8.8) and 2.69 (95% CI 1.33–5.43),
respectively. The MPZL2 deletion was close to the Immunoglobulin-
like antibody Variable domain (Ig-V; Fig. 1) which is involved in
thymocyte development36. In gnomAD, MAF was the highest in the
Ashkenazi Jewish (AJ, 0.38%) than other populations, including NFE
(0.123%), Latino (0.028%), and African (0.012%). Additionally, a start-
loss p.M1T of MPZL2 was present in two LCs (Fig. 1 and
Supplementary Table 3).
Other interesting candidates from the discovery (Supplemen-

tary Table 1), include 1) two VUS ins, TP63 c.*2550insT
(rs772929136) and CHEK2 c.*2insC (rs749257861), both were
located in the 3′ UTR; however, no genotype data/coverage were
available in validation sets; 2) a protective effect pathogenic
variant, CHEK2 p.S428F (rs137853011), that was non-significant in
the meta-analysis (OR 0.41, 95% CI 0.13–1.31, P-value 0.13).

Candidate gene prioritization
As shown in Table 2, of the 24 candidate genes, the most
evolutionarily constrained (intolerance) genes with the lowest LoF
observed/expected (o/e) values were PHF13, TP63, and STAU2;
whereas the genes with the highest LC-correlated PhoRank scores
were CHEK2, ATM, TP63, and MME. The most interesting protein

interaction network consists of eight genes and is centered on
three known DNA damage response genes, CHEK2-ATM-TP63,
linking five other genes (Supplementary Fig. 5). GO enrichment
analysis highlighted genes involved in replicative senescence
(which triggers a DNA damage response); whereas KEGG pathway
analysis revealed that genes were involved in small cell LC
(Supplementary Table 5).

Endogenous DNA damage assay
Large conserved networks of E. coli and human proteins were
recently discovered to promote endogenous DNA damage when
overproduced37. These networks are known as DNA damageome
proteins (DDPs)37. The DNA damageome also includes LoF variants
that show DNA damage-up phenotypes38, most of which are not
directly related to DNA repair but rather participate in the DNA
damage production. We selected six prioritized genes for the
assay: CHEK2, ATM, MPZL2, MLNR, POMC, and MME. We discovered
the knockdown of five genes, overproduction of the mutant MLNR
p.Q334V fs*3del and wildtype POMC promote DNA damage.
Specifically, we first used pooled small interfering RNAs (siRNAs)
that minimize off-target effects, and observed significantly
increased DNA damage levels (γH2AX) for 5/6 genes (Fig. 2a–c),

Table 2. Gene-based association tests in the TRICL study, ranked by P-value from the combined multivariate and collapsing test.

Genes N. rare deleterious
variants*

N. multi-marker
genotypes

N. carriers LC
/Control

KBAC test
P-value

CMC test
P-value

CMC test OR
(95% CI)

Gene constraint
LoF o/e (90% CI)&

Gene PhoRank to
phenotype#

Risk genes

CCDC105 20 11 28/5 0.012 0.013 5.63 (0.87–31.4) 0.71 (0.46–1.12) 0.12 _ PF

BMP8A 3 4 11/2 0.014 0.014 4.22 (1.14–36.3) 0.8 (0.49–1.35) 0.32 _ PF

MME/CD10 5 6 7/0 0.014 0.015 1.85 (0.65–11.16) 0.7 (0.54–0.92) 0.83 _ LC

NPHP3 6 7 7/0 0.015 0.015 1.68 (0.76–15.4) 0.5 (0.38–0.65) 0.68 _ PF

MLNR 5 6 11/2 0.005 0.022 4.19 (1.12–38.9) 0.51 (0.5–1.16) 0.09 _ PF

NKX6-1 9 11 47/31 0.064 0.048 1.30 (0.82–2.06) 0.39 (0.18–1.0) 0.28 _ LC

ENAM 7 8 9/2 0.043 0.065 2.94 (0.79–9.07) 0.6 (0.44–0.84)` 0.32 _ PF

ATM 15 15 16/11 0.591 0.098 1.58 (0.69–7.04) 0.60 (0.51–0.71) 0.95 _ LC

RHBDD3 9 10 11/4 0.101 0.102 1.64 (0.85–23.6) 0.71 (0.41–1.27) 0.16 _ PF

STAU2 27 31 107/76 0.141 0.213 1.21 (0.89–1.65) 0.14 (0.07–0.32) 0.23 _ LC

TALPID3 11 12 17/8 0.139 0.403 1.64 (0.93–2.24) 0.54 (0.42–0.72) 0.61 _ PF

MPZL2 6 7 7/3 0.153 0.403 1.34 (0.77–2.13) 1.34 (0.9–1.86) 0.12 _ LC

TP63 6 7 9/3 0.396 0.539 1.20 (0.59–12.3) 0.13 (0.07–0.27) 0.87 _ LC

POMC 6 7 7/5 0.744 0.790 1.45 (0.57–3.71) 0.74 (0.42–1.38) 0.30 _ PF

F13B 5 6 7/5 0.965 0.905 1.02 (0.81–1.27) 0.59 (0.41–0.85) 0.34 _ PF

Protective genes

TXNDC15 11 12 10/27 0.746 0.001 0.31 (0.15–0.64) 0.38 (0.21–0.76) 0.60 _ PF

GJB6 2 3 0/6 0.877 0.008 0.12 (0.02–0.66) 1.07 (0.66–1.74) 0.31 _ LC

MOB3A 3 4 3/12 0.587 0.008 0.21 (0.05–0.67) 0.96 (0.54–1.7) 0.10 _ LC

CASQ2 2 4 15/26 0.955 0.013 0.73 (0.44–1.23) 0.94 (0.65–1.38) 0.36 _ PF

OR51J1 2 3 1/6 0.351 0.037 0.14 (0.03–0.84) 0.19 (0.07–0.88) 0.10 _ PF

FAM111A 5 6 11/21 0.406 0.076 0.42 (0.20–0.92) 2.09 (0.66–1.95) 0.29 _ LC

PHF13 9 10 16/12 0.097 0.742 1.23 (0.53–5.17) 0.01 (0–0.25) 0.28 _ LC+ PF

MLKL 17 19 30/28 0.055 0.689 0.95 (0.54–3.52) 0.87 (0.63–1.24) 0.20 _ PF

CHEK2 8 9 7/5 0.484 0.811 1.11 (0.64–2.02) 1.15 (0.87–1.53) 0.97 _ LC

TRICL Transdisciplinary Research in Cancer of the Lung, CMC Combined Multivariate and Collapsing, KBAC Kernel-Based Adaptive Cluster, LoF loss of function,
LC lung cancer, PF pulmonary function, OR odds ratio, CI confidence interval, o/e observed/expected.
*Number of rare deleterious variants within the genes. False discovery rate (FDR) adjusted P-value was reported.
&Gene constraint LoF o/e values developed with gnomAD: observed counts are based on sequencing data from gnomAD, expected counts are based on a
mutational model that takes sequence context and coverage into account. Lower o/e, in particular, the upper bound of the CI < 0.35 are indicative of strong
intolerance (disease-causing). The top three genes with the lowest o/e were bolded: PHF13, TP63, and STAU2.
#Genes Phevo PhoRank is based on gene functions relevant to the disease phenotype (LC, COPD/PF) from diverse biomedical ontologies. Disease-associated
genes have a higher Phevor score. The top four genes with the highest scores were bolded: CHEK2, ATM, TP63, and MME/CD10.

Y. Liu et al.

4

npj Precision Oncology (2021)    12 Published in partnership with The Hormel Institute, University of Minnesota



including two well-known DNA repair genes (CHEK2 and ATM) and
three newly discovered DDPs (POMC, MLNR, and MME). By
contrast, the knockdown of MPZL2 did not affect DNA damage.
For the three newly discovered DDPs, we further validated their
DNA damage phenotypes using different individual siRNAs
(Fig. 2d–f). Moreover, overproducing the mutant MLNR p.Q334V
fs*3del and the wildtype POMC open reading frame (ORF) from
the plasmid promote DNA damage in the lung fibroblast-derived
cell line (Fig. 2g–i).

DISCUSSION
Our analyses led to the identification of 25 rare deleterious
candidates (in 24 genes) that may be associated with LC
susceptibility. Of the five validated variants, we rediscovered two
pathogenic variants mapped to known LC susceptibility loci, ATM
p.V2716A and MPZL2 p.I24M fs*22del; and identified three
deletions in novel LC susceptibility genes, POMC 3′ UTR c.*28delT,
STAU2 p.N364M fs*67del, and MLNR p.Q334V fs*3del. Our GxE
analysis also suggests some of these associations may be further
modified by smoking (MLNR p.Q334V fs*3del and MOB3A p.
F69_I75del) and FHLC (TXNDC15 p.E9G fs*68del). Additionally, our
assays of cellular DNA damage identified POMC and MLNR as part
of the DNA damageome, and confirmed a double-strand break
repair role of ATM.
This study confirms a robust association between LC suscept-

ibility and ATM and discovered a new pathogenic p.V2716A, that
reside in the PI3K catalytic domain. We also found this association
is more evident in AD, which is consistent with several previous
studies21,39,40. ATM is a critical first responder to DNA damage in
the cell and essential for genome stability. Several association
studies have indicated that common variants of ATM are linked to
cancer susceptibility, including LC41–43. Expression of the PI3K
domain in ataxia-telangiectasia cells resulted in complemented
radiosensitivity and reduced chromosomal breakage after irradia-
tion44–46, suggesting the PI3K domain contains many of the
significant activity of ATM47. Our DNA damage assay also shows
elevated DNA damage in lung fibroblasts confirming the previous
finding that ATM defective cells accumulate more double-strand
breaks48. Further, the presence of additional rare deleterious
variants, together with previously identified p.P1054R31 and p.
L2307F21, strongly suggests that the ATM gene plays a role in LC
susceptibility.
Another known LC locus we rediscovered is MPZL2 (also called

Epithelial v-like antigen 1, EVA), and the pathogenic frameshift
p.I24M fs*22del. MPZL2 is located at 11q23.3, a known GWAS locus
for LC31,49 and hearing loss50,51. MPZL2 is one of the top candidate
target genes at this locus based on the expression quantitative
trait loci (eQTLs) mapping31. MPZL2 is a member of the
immunoglobulin superfamily, preferentially expressed in lung
and thymus epithelium with a potential role as a favorable
prognostic marker in thyroid cancer52. Interestingly, the MAF of p.
I24M fs*22del in the AJ population was 5-fold higher than the
general population in gnomAD. There are several examples where
rare causal variants (e.g., variants in the P53, CFTR, and BRCA1/2)
have higher frequencies within the AJ population53–56. In our DNA
damage assay, MPZL2 expression levels do not affect endogenous
DNA damage in lung fibroblasts, implying the need to investigate
alternative mechanisms in future functional studies.
The most consistent and interesting findings are two new

deletions: POMC 3′ UTR c.*28delT and MLNR p.Q334V fs*3del.
POMC encodes a polypeptide hormone precursor that regulating
energy metabolism, nicotinic-induced weight loss, and immune
reactions57–59. In particular, POMC plays a role in UV-induced DNA
damage through interactions with TP53 and is associated with skin
cancer susceptibility60–64. Abnormal expression of POMC was a
poor prognostic marker for LC65–68. Using in vitro models, Derghal
et al. evaluated putative miRNA (i.e., miR-383, miR-384-3p, andTa
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miR-488) and found them physically bind to the 3′ UTR mRNA and
regulate POMC expression in several neuronal subtypes69. Our
DNA damage assay showed both downregulation and over-
production of wildtype POMC promotes endogenous DNA
damage. Whether and how the c.*28delT affects POMC expression
and their putative role to LC risk merit further mechanistic
investigation. MLNR is a member of the G-protein coupled
receptor 1 family, and known for regulating gastrointestinal
activity70. MLNR variants and dysregulation have been implicated
in lung occult small cell carcinoma, bile duct cancer71, and head
and neck cancer72. Our overproduction results of the MLNR p.
Q334V fs*3del suggest a dominant-negative role in terms of DNA
damage promotion. Collectively, these findings suggesting POMC
and MLNR, while both functions in multiple cellular processes,
might also share their various effects on DNA damage.
Although the pathogenic variant, CHEK2 p.S428F with lower LC

risk is not statistically significant in the meta-analysis, its protective
effect is consistent with another known pathogenic low-frequency
variant, CHEK2 p.I157T, associated with reduced risk of smoking-
related cancers (lung, laryngeal, urinary, and upper aerodigestive
tract)18,73–75. In contrast, both p.I157T and p.S428F showed an
increased risk of breast cancer75–79. The mechanism underlying
this effect is an ongoing question with unknown impact, perhaps
related to smoking exposure and cell cycle checkpoint signaling/

apoptosis75. STAU2 is a double-stranded RNA-binding protein and
a major regulator of mRNA transport, decay, and translation80. It
was reported that STAU2 downregulation enhances levels of DNA
damage (γH2AX) and promotes apoptosis (PARP1 cleavage) in
camptothecin-treated cells81,82. The role of STAU2 in LC requires
future investigations.
A main strength of the study is the focus on LC patients with

extreme phenotypes of known risk factors (i.e., early-onset,
FHLC, or familial cases in high-risk families), which provide >5
times statistical power10. Another strength was the relatively
large sample size, which is by far the largest collection of LC
rare variant analysis to our knowledge. It should be noted
however that our study still has limited power to detect
association for ultra-rare variants and those candidates (16/25)
that could not be assessed in the validation. Third, our exome
plus customized captures (50 Mb+ 250 kb) in the discovery
offers an efficient method for analyzing known susceptibility
regions at greater depth and better coverage, particularly for
indels that are often poorly captured in GWAS. Last, we have
focused on the investigation of predicted LoF variants which
provide directionality of effect. Notably, 14/25 candidates we
identified were frameshift deletions that result in either
truncated proteins or nonsense-mediated mRNA decay. In the
discovery, we observed non-coding variants reside in regulatory

Fig. 1 Gene exons, protein domains, and rare deleterious variants of the candidate genes. The top five candidate variants (red arrows): 1)
POMC c.*28 deletion (del) located at target sites of several miRNAs in 3′ UTR; 2) STAU2 p.N364M fs*67del located in the double-stranded RNA-
binding motif (dsrm), and next to a phosphorylation site p.S363; 3) ATM V2716A located in the PI3-kinase (PI3K) catalytic domain; 4) MPZL2 p.
I24M fs*22del was close to the antibody variable domain of immunoglobulins (Ig-V); 5) MLNR p.Q334V fs*3del located in the transmembrane
receptor domain (TM), and close to a phosphorylation site p.S327. The color vertical bars represent different types of variants: ClinVar
pathogenic variants (bold blue: POMC W84* stop-gain, ATM Q414* stop-gain, and MPZL2 M1T* start-loss), previous reported LC-associated
variants (blue: ATM P1054R and L2307F, and MPZL2 deletion rs13915729), and ClinVar variants of uncertain significance (black). Gene exons
(green blocks), introns (horizontal green lines), untranslated regions (UTRs, orange blocks), and protein domain/motif (framed rectangles) are
shown. The length of the gene (kb) and protein (number of amino acids, AA) are shown to the right.
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regions that may influence target gene expression; however,
the lack of population frequency information and insufficient
coverage in the validation, limits our ability to explore this
aspect for some non-coding variants.

There exist various challenges using the gnomAD as controls,
including lack of individual-level data, inability to perform GxE
interaction, gene-burden tests, and differences in platforms/
coverage. Additionally, there were some racial differences in

1.0K 3.0K1.0K 3.0K

1.0K 3.0K

1.0K 3.0K

1.0K 3.0K1.0K 3.0K

γH2AX intensity (afu)

0

0.2

0.4

%
 o

f c
el

ls

non-targeting

POMC

non-targeting

MPZL2

non-targeting

CHEK2

non-targeting

ATM

non-targeting

MLNR

non-targeting

MME

%
 o

f c
el

ls

0

0.2

0.4

0.6

moc
k

NT
MPZL2

POMC
MLN

R
MME

CHEK2
ATM

800

1000

1200

1400

siRNA

M
ed

ia
n 

γH
2A

X 
in

te
ns

it y
 (a

fu
)

n.s

*

**
**

***

   siRNA
knockdown

72h 

γH2AX
DNA Damage analysis

Flow cytometryMRC5-SV40a

b

c

Tu
bu

lin

MLN
R_Q

33
4V

MME_P
15

6L

MPZL2
_I2

4M
POMC

0

1

2

N
or

m
al

iz
ed

 D
N

A 
da

m
ag

e 
le

ve
ls

 (v
s 

Tu
bu

lin
)

*

*

NT

MLN
R#3

MLN
R#4

MME#1

MME#2

POMC#1

POMC#3
0.5

1.0

1.5

median fluorescence γH2AX-positive subpopulation

NT

MLN
R#3

MLN
R#4

MME#1

MME#2

POMC#1

POMC#3
0

2

4

6

N
or

m
al

iz
ed

  γ
H

2A
X 

in
te

ns
ity

 (v
s 

m
ed

ia
n 

N
T)

d

N
or

m
al

iz
ed

  γ
H

2A
X -

po
sit

ive
 s

ub
po

pu
la

tio
n 

(v
s 

N
T)

0.42%

102

103

104

0 10
4

10
2

10
3

10
4

0 104

10
2

10
3

10
4

0.50%

1.60%

0 10
4

γH
2A

X  
in

te
ns

ity
 (a

fu
)

mock non-targeting

MME #2

0 104

GFP intensity (negative channel)

102

103

104
1.22%

POMC #3

fe
siRNA siRNA

hGFP gene or variant

DNA Damage analysis    transient 
overproduction

Flow cytometry

γH2AX

72h 
MRC5-SV40

    
overproductiong

0 10
5

0

10
4

0 10
5

0

10
4

0 10
5

0

10
4

0 10
5

0

10
4

mock Tubulin

POMC MLNR_Q334V

i

γH
2A

X 
in

te
ns

ity
 (a

fu
)

GFP intensity (afu)

Y. Liu et al.

7

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2021)    12 



non-white between TCGA cases (27%) and gnomAD controls
(30%), that could cause biased effect sizes in the meta-analysis.
Genetic ancestry analysis shows 90% TCGA-LCs were inferred as
genetic European ancestry83. However, it is possible that a small
portion of European ancestry TCGA-patients has AJ origin, given
that 7% of ovarian cancer84 and 24% of endometrial cancer85 are
of AJ heritage. It is of note that in our dataset, none of the variant
allele carriers of the 25 candidates were found to have African-
ancestry. Therefore, we expect this potential population stratifica-
tion effect to be relatively small on rare variant associations,
particularly in non-Africans that have not experienced severe
population bottlenecks86–88.
Although we demonstrated strong joint-effect of the 25

potential candidates (Supplementary Table 2), it is challenging
to detect tissue-specific eQTL effects, identify mutational signa-
tures, or construct polygenic risk score (PRS) based on these rare
or ultra-rare candidates, due to their low frequencies and weak LD
among rare or with common variants. We found some lung-tissue
specific eQTL variants from The Genotype-Tissue Expression
project (GTEx): three SNPs for ATM, 61 SNPs for POMC, 75 SNPs
for MPZL2, and 141 SNPs for STAU2; but none of them overlap or
are in LD with the 25 candidates we are reporting. Future studies
could integrate single-cell transcriptomic sequencing and epige-
nomic maps in cells and tissues relevant to LC, to establish
mutation signatures (i.e., DNA mismatch repair) and explore the
application of PRS to clinical care.
In conclusion, our results provide evidence that rare deleterious

variants with moderate to large effect sizes, in particular ATM p.
V2716A, MPZL2 p.I24M fs*22del, STAU2 p.N364M fs*67del, POMC 3′
UTR c.*28delT, and MLNR p.Q334V fs*3del, contribute to LC
susceptibility. Additional targeted studies using CRISPR/Cas9
mutagenesis could be performed for each variant, to evaluate
more comprehensively what its effects are on gene functions and
the underlying molecular mechanisms. Future extremely large-
scale multi-ancestry studies may also provide additional opportu-
nities to assess ancestry-specific predisposing variants, and
discover new genetic alterations with relatively large attributable
risk for LC.

METHODS
Study population in the discovery set
The discovery set included 1094 LC cases and 933 controls from the TRICL
study89. All study subjects and biospecimens were collected with informed
consent under institutional review board (IRB) approved protocols.
Subjects were selected from four sites: Harvard School of Public Health
(HSPH), International Agency for Research on Cancer (IARC), University of
Liverpool, and Mount Sinai Hospital and Princess Margaret Hospital (MSH-
PMH) in Toronto89. Cases were selected because they reported FHLC (first-
degree) or were early-onset (<60 yrs) or had specimens available (Table 1).
Never smokers were defined as persons who had smoked fewer than 100
cigarettes in their lifetimes. The ethnicities were inferred using FastPop90.

WES and variant calling in the discovery set
WES was performed using captures with Agilent SureSelect v5 (50 Mb,
Agilent Technologies) and custom capture targeted known LC-GWAS
region91,92 (250 kb). Germline DNA was sequenced at the Center for
Inherited Disease Research. The mean on-target coverage was 52x for each

sequencing experiment and greater than 97% of on-target bases had a
depth greater than 10x. Sequence reads were mapped to the human
reference GRCh37/hg19 using the Burrows-Wheeler Aligner. SNVs and
indels were called based on the union of raw GATK v3.3-0 and Atlas2. QC
process involved the following user-definable criteria: i) low-complexity
repeats and segmental duplications were filtered out; ii) quality score ≥20,
depth ≥10, and AB ≥ 0.2 for heterozygous calls; iii) call rate ≥0.85; and iv)
samples with abnormal heterozygosity rate, sex discordance, <95%
completion rates, and unexpected relatedness (identity-by-state >10%)
were filtered out.

Rare variant filtering and functional annotation in the
discovery set
Following variant calling, rare variants were further enriched by the
application of three-steps: i) Variant with MAF < 1% in the gnomAD (NFE
ancestry, v2.1); ii) Variants class, including missense, protein-truncating,
and regulatory; and iii) Mutation effects, i.e., variant results in protein
truncation and predicted to be deleterious from 4/6 prediction tools (SIFT,
Polyphen-2, MutationTaster, MutationAssessor, FATHMM, and FATHMM-
MKL). The miRNAs putatively bound to the sequence containing UTR
variants were identified by the TargetScan35. We additionally incorporated
rare variants classified as pathogenic, likely pathogenic, or VUS from the
ClinVar database, which compiles clinically observed human variants.

Single variant association test in the discovery set
For variants derived from the above automated filtering schema, we
conducted the association test using Fisher’s exact test. We used the
Genome Browser (Golden Helix) visualization tool to verify the presence of
the potential candidates in each carrier. By manual review of the variants’
coverage plot (read depth) and pile-up plot (read alignment), we rule out
low-confidence variants resulting from mapping error, strand bias, and
weak exon conservation.

Gene–environment interaction and gene-based burden
analysis in the discovery set
For the candidates identified from the association test, we performed G×E
interaction (i.e., age-onset, sex, smoking status, pack-years, and FHLC),
using the mixed linear regression model. To measure the cumulative effect
of the rare deleterious variants within the gene, we performed collapsing
tests using the CMC and the KBAC tests93,94.

Study populations in the validation sets and meta-analysis
The candidate variants were further examined in seven validation datasets,
aggregated from different centers and across several platforms (four WES
data and three genome-wide genotyping datasets as shown in Table 1).
We tabulated the variant carrier counts per candidate and performed
meta-analyses using the inverse-variance-weighted fixed-effects (assume
the true effect size is the same in all studies).

1. GELCC study (Genetic Epidemiology of LC Consortium, 380 LCs):
This included 122 familial and 258 sporadic LC cases. i) Familial LC
Study Subjects (dbGaP phs000629.v1.p1). The familial cases were
selected from high-risk LC families with at least two first-degree
relatives affected with LC95. The GELCC study population and
recruitment scheme have been described in detail previously96.
Samples and data were collected by the familial LC recruitment sites
of the GELCC, that included the University of Cincinnati, University of
Colorado Health Science Center, Karmanos Cancer Institute at
Wayne State University, Louisiana State University Health Sciences
Center-New Orleans, Mayo Clinic, University of Toledo, Johns
Hopkins University, and Saccomanno Research Institute. ii) Sporadic

Fig. 2 Discovery of DNA damageome genes/proteins and variants. a siRNA knockdown endogenous DNA damage assay scheme.
b Increased DNA damage (γH2AX) levels in five out of the six genes knockdowns (mean ± SEM, n= 2~4), MLNR, CHEK2, POMC, ATM, and MME,
compared with non-targeting (NT) siRNA control. There is no increasing DNA damage in MPZL2 knockdown cells. c Representative flow
histograms showing higher γH2AX levels in gene knockdowns. d–f MLNR, MME, and POMC knockdown by two individual siRNAs confirmed the
DNA damage-up phenotypes by pooled siRNAs in b. DNA damage quantified by d median fluorescence intensity or e DNA-damage positive
subpopulation. f Examples of flow cytometry dot plots showing DNA-damage positive subpopulation. g Overproduction endogenous DNA
damage assay scheme. hWildtype POMC and mutant MLNR p.Q334V fs*3del overproduction promote DNA damage. GFP-Tubulin as a control.
i Representative histograms of (g). *P-value < 0.05, **P-value < 0.01, n.s not significant (P-value > 0.05).
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LC Study Subjects. The sporadic LC patients were selected from our
previous WES study19,20, including samples from the HSPH, Baylor
College of Medicine (BCM), and MD Anderson Cancer Center
(MDACC). Germline DNA was sequenced utilizing NimbleGen
VCRome 2.1 (Roche)19,20, and HumanOmniExpressExome (Illu-
mina)95.

2. TCGA (The Cancer Genome Atlas cohort, 1015 LCs): this public
germline WES dataset includes non-tumor DNA from 577 AD and
438 SCC (dbGaP Phs000178.v9.p8), using Agilent SureSelect (Agilent
Technologies) and NimbleGen SeqCap (Roche).

3. COPDGene (Genetic Epidemiology of COPD Study97, 318 controls):
controls were selected to be white, smokers with normal lung
function data (defined as post-bronchodilator Forced Expiratory
Volume in 1 s [FEV1] ≥ 0 80% predicted, FEV1/FVC ≥ 0.7), and with
smoking histories ≥10 pack-years; WES utilized NimbleGen VCRome
2.1 (Roche)19,20.

4. GnomAD (the Genome Aggregation Database, 134,187 controls): we
restricted our analyses to non-cancer individuals (excluded indivi-
duals from cancer cohort studies, such as the TCGA cohort),
resulting in a data subset of 118,479 exomes and 15,708 whole
genomes; multiple exome captures were utilized including Nimble-
gen SeqCap (Roche), Agilent SureSelect (Agilent Technologies), and
Illumina Exome BeadChip (Illumina).

5. Oncoarray case–control study (17,878 LCs vs. 13,425 controls;
dbGaP phs001273): The OncoArray consortium is a network created
to increase understanding of the genetic architecture of common
cancers. We restricted our analyses to European descent subjects
(Supplementary Fig. 1)98–100; participants were obtained from 29 LC
studies across North America and Europe, and genotyped on
OncoArray-500K BeadChip (Illumina). There were 1162 participants
in the OncoArray consortium who were also exome-sequenced in
the TRICL discovery, and therefore these samples were excluded
from the analysis in the validation phase.

6. Affymetrix case–control studies (5364 LCs vs. 5724 controls; dbGaP
phs001681.v1.p1). This is a large pooled sample was assembled
consisting of 10 independent case–control studies which previously
described elsewhere99,101. Study participants were genotyped on an
Axiom Exome Plus Array (Affymetrix)99,101, which contains a custom
panel of key LC GWAS markers, and rare coding SNVs and indels102.
There were 992 participants in the Affymetrix that were also exome-
sequenced in the TRICL discovery, and therefore these samples were
excluded from the analysis in the validation phase.

7. UKB (UK Biobank cohort103; 2166 LCs vs. 401,453 controls): we
restricted our analyses to non-cancer controls and LC cases;
individuals were genotyped on UK BiLEVE Axiom Array and UK
Biobank Axiom Array (Affymetrix)103,104.

Gene prioritization based on functional annotations and
protein interactions network
To better reprioritize genes and candidates, we used three prioritization
tools: 1) Gene evolutionary constraint to LoF variation, which using the o/e
ratio from the gnomAD. 2) Phevor PhoRank algorithm105, which ranks the
genes based on their phenotypic relevance as defined by diverse
biomedical ontologies. 3) Protein–Protein interactions (PPI) network using
the STRING database106, with an interaction score cut-off ≥0.15 (low
confidence).

Functional evaluation of candidate genes using endogenous
DNA damage assay
Endogenous DNA damage is proposed to drive cancers by genome
instability — a hallmark of cancer37,38. To test whether knockdown or
overexpression of the candidate genes or variants induces endogenous
DNA damage, we performed flow cytometric assays to measure γH2AX
levels, a DNA double-strand-break marker107, following siRNA knockdown
and overproduction of GFP fusions of proteins of interest.

1. Human cell lines and reagents. MRC5-SV40, a human lung
fibroblasts derived cell line was maintained in standard Dulbecco’s
modified Eagle’s medium with 10% fetal bovine serum, 2mM L-
glutamine, 100 μg/mL penicillin, and 100 μg/mL streptomycin37,38.
The cell line was authenticated by ATCC STR analysis and routinely
check to be mycoplasma-free. MLNR p.Q334V fs*3del, MME p.P156L
fs, MPZL2 p.I24M fs*22del, and full-length wildtype POMC entry

clones for gateway cloning was synthesized, sequence-verified, and
cloned into pDONR223 (Invitrogen) by Genscipt. All the above
clones were further subcloned into an N-terminal GFP tagged vector
(pcDNA6.2/N-EmGFP-DEST, Invitrogen), using Gateway LR Clonase II
Enzyme Mix (Invitrogen). Overexpression plasmids transfections
were performed using GenJet In Vitro DNA Transfection Reagent
Ver. II (# SL100489, SignaGen). Non-targeting pool siRNA (D-001810-
10), SMARTpool siRNAs each containing four targeting sequences of
MME, MLNR, POMC, ATM, CHEK2, and MPZL2, sets of 4 siRNAs
targeting MME, MLNR, and POMC were purchased from Dharmacon.
The target sequences for MME, MLNR, and POMC are as follows: #1
MME (GGAGGCUGGUUGAAACGUA), #2 MME (GAACCUAUAGGCCA
GAGUA), #3 MME (AAAGAUGAGUGGAUAAGUG), #4 MME (GACAG
CACCUUAAUGGAAU); #1 MLNR (GCGCUAACGUGAAGACGAU), #2
MLNR (GCGCAUCUAUCAACCCAAU), #3 MLNR (CAUCGUCGCUCUG
CAACUU), #4 MLNR (GAAGAUUCGCGGAUGAUGU); #1 POMC
(GACAAGCGCUACGGCGGUU), #2 POMC (CAGUGAAGGUGUACC
CUAA), #3 POMC (GGCCGAGACUCCCAUGUUC), #4 POMC (CUACAA
GAAGGGCGAGUGA). siRNA transfections were carried out with
lipofectamine RNAiMax Transfection Reagent (#13778075, Invitro-
gen), following the manufacturer’s recommendations. SMARTpool
ON-TARGETplus siRNA was designed and modified for greater
specificity and reduce off-targets up to 90% utilizing a dual-strand
modification.

2. Real-time quantitative reverse transcription PCR (RT-qPCR).
Knockdown efficiency was quantified by RT-qPCR and shown in
Supplementary Fig. 6. RNeasy mini kit (Qiagen #74106) was used
to extract total RNA from cells 72 h post siRNA transfection or
protein overproduction. 300 ng of total RNA from each sample
was used to synthesize cDNA by the Superscript III first-strand
synthesis system (Invitrogen, #18080051). The qPCR reactions
were performed using iTaq Universal SYBR Green Supermix
(BioRad #172-5121) on a QuantStudio 3 Real-Time PCR System
(Applied Biosystems). For each gene, three replicates were
analyzed and the average threshold cycle (Ct) was calculated.
The relative expression levels were calculated with the 2–ΔΔCt
method108. Primers used included GAPDH (housekeeping gene)
forward: CAA TGA CCC CTT CAT TGA CC; GAPDH reverse: GAT CTC
GCT CCT GGA AGA TG; POMC forward: GCC AGT GTC AGG ACC
TCA C; POMC reverse: GGG AAC ATG GGA GTC TCG G; CHEK2
forward: TCT CGG GAG TCG GAT GTT GAG; CHEK2 reverse: CCT
GAG TGG ACA CTG TCT CTA A; ATM forward: GGC TAT TCA GTG
TGC GAG ACA; ATM reverse: TGG CTC CTT TCG GAT GAT GGA;
MPZL2 forward: TTA ATG GGA CAG ATG CTC GGT; MPZL2 reverse:
AAG ACA CCC GGT CCT TAA ACC; MME forward: AGA AGA AAC
AGC GAT GGA CTC C; MME reverse: CAT AGA GTG CGA TCA TTG
TCA CA; MLNR forward (siRNA): CTG AGC GCA TCT ATC AAC CCA;
MLNR reverse (siRNA): TCC CAT CGT CTT CAC GTT AGC; MLNR
forward (overexpression): GTG GTG ACC GTG ATG CTG AT; MLNR
reverse (overexpression): AGC AGG ATG AGT AGG TCG GA.

3. Flow-cytometric DNA damage assays. Sensitive DNA damage
assays by flow cytometry were performed as previously
described37,38. γH2AX primary antibody (Sigma, Catalog #05-
636) and goat anti-mouse secondary antibody, Alexa Fluor 647
(Thermo Fisher, Catalog #A21236) were used to stain cells.
Stained cells were then analyzed by a BD LSRFortessa flow
cytometer. FCS files were analyzed by FlowJo 10.5 software. For
siRNA experiments, cells were collected 72 h post transfection
and median fluorescence intensity was quantified. Also, to
quantify the DNA-damage positive subpopulations, 0.5% of the
mock cells were gated as the γH2AX threshold as previously
demonstrated. The percentage of γH2AX positive cells in each
sample was calculated and compared to its corresponding non-
targeting siRNA control. For overproduction experiments, mock-
transfected cells were used to set the gates to determine the GFP
and γH2AX positive cells. 0.5% of the mock cells were gated as
the γH2AX threshold. The DNA-damage ratios by protein over-
production for 72 h are calculated as described. Briefly, the
damage ratio is defined as (Q2/Q3)/(Q1/Q4), where Q2 is the
portion of transfected γH2AX-positive cells; Q3 is the portion of
transfected, γH2AX -negative cells; Q1 is the portion of
untransfected, γH2AX-positive cells; and Q4 is the portion of
untransfected, γH2AX-negative cells. The DNA damage ratios by
candidate protein overproduction were compared with GFP-
Tubulin as previously described.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and/or analyzed during the related study are described in the
figshare metadata record: https://doi.org/10.6084/m9.figshare.13280387109. The data
that support the findings of this study are available via the dbGaP (database of
genotypes and phenotypes) repository. The data are controlled-access, so interested
parties will need to request access — information on how to do so can be found on
pages linked to below. The access numbers are https://identifiers.org/dbgap:
phs000878.v2.p1110 for Transdisciplinary Research in Cancer of the Lung (TRICL)
study, https://identifiers.org/dbgap:phs001273.v1.p1111 for the OncoArray study,
https://identifiers.org/dbgap:phs001681.v1.p1112 for the Affymetrix study, https://
identifiers.org/dbgap:phs000629.v1.p1113 for part of the Genetic Epidemiology of
Lung Cancer Consortium (GELCC) study, and https://identifiers.org/dbgap:phs000178.
v9.p8114 for The Cancer Genome Atlas (TCGA) study. Two files are not publicly
available in order to protect patient privacy. These are: ‘TRICL WES.xlsx’ (underlying
Supplementary Table 2 and Supplementary Fig. 3) and ‘TRICL WES.bam’ (underlying
Supplementary Fig. 2). These data are only available to authorized researchers who
have submitted an IRB application. Please email the corresponding author for access.
Data underlying Supplementary Table 5 and Supplementary Fig. 5 are a publicly
available resource available from the STRING (Search Tool for the Retrieval of
Interacting Genes) website: http://string-db.org/. The file used in this study was
‘Protein-Protein Interaction Networks Functional Enrichment Analysis-STRING.txt’.
Sources of other datasets used in this study are: the UKB dataset is accessible to
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The GnomAD dataset can be downloaded from the Genome Aggregation Database
at https://gnomad.broadinstitute.org/.
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