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Abstract

Background: Germline genetic variation contributes to lung cancer (LC) susceptibility. Previous genome-wide association
studies (GWAS) have implicated susceptibility loci involved in smoking behaviors and DNA repair genes, but further work is
required to identify susceptibility variants. Methods: To identify LC susceptibility loci, a family history-based genome-wide
association by proxy (GWAx) of LC (48 843 European proxy LC patients, 195 387 controls) was combined with a previous LC
GWAS (29 266 patients, 56 450 controls) by meta-analysis. Colocalization was used to explore candidate genes and overlap
with existing traits at discovered susceptibility loci. Polygenic risk scores (PRS) were tested within an independent validation
cohort (1 666 LC patients vs 6 664 controls) using variants selected from the LC susceptibility loci and a novel selection ap-
proach using published GWAS summary statistics. Finally, the effects of the LC PRS on somatic mutational burden were ex-
plored in patients whose tumor resections have been profiled by exome (n¼685) and genome sequencing (n¼61). Statistical
tests were 2-sided. Results: The GWAx–GWAS meta-analysis identified 8 novel LC loci. Colocalization implicated DNA repair
genes (CHEK1), metabolic genes (CYP1A1), and smoking propensity genes (CHRNA4 and CHRNB2). PRS analysis demonstrated
that these variants, as well as subgenome-wide significant variants related to expression quantitative trait loci and/or smok-
ing propensity, assisted in LC genetic risk prediction (odds ratio ¼1.37, 95% confidence interval ¼ 1.29 to 1.45; P< .001).
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Patients with higher genetic PRS loads of smoking-related variants tended to have higher mutation burdens in their lung
tumors. Conclusions: This study has expanded the number of LC susceptibility loci and provided insights into the molecular
mechanisms by which these susceptibility variants contribute to LC development.

Lung cancer (LC) is the most common cause of cancer-related
deaths worldwide. Although most LC risk is attributable to ex-
posure to tobacco smoke, a genetic basis for LC susceptibility
was initially identified from familial aggregation studies after
accounting for personal smoking habits (1–3), segregation-based
analyses (4), and twin studies (5). Genome-wide association
studies (GWAS) have subsequently identified multiple LC sus-
ceptibility loci in genes related to smoking behaviors (CHRNA5,
CHRNA3, CHRNB4, CYP2A6) (6–8), DNA repair (CHEK2, BRCA2,
ATM) (9–11), and genes related to telomere regulation (TERT,
RTEL, OBFC1) (12,13) as well as many loci where the target genes
are less obvious (13).

Although traditional GWAS approaches continue to expand
in size, novel analytical approaches can leverage existing data
from large, genotyped cohorts to identify additional susceptibil-
ity loci and explore candidate genes and potential mechanisms
by which the susceptibility is mediated. In this current study,
we undertook a genome-wide association by proxy (GWAx) of
LC. This approach considers unaffected individuals with a first-
degree relative diagnosed with the given trait as proxy patients
and unaffected individuals without relatives diagnosed with
the given trait as proxy controls in large genotyped biobanks
(14,15). After meta-analyzing the results with existing LC GWAS,
we explored potential candidate genes and functional mecha-
nisms at the newly identified susceptibility loci by considering
how the variants in candidate loci overlap (colocalize) with var-
iants associated with other traits, such as tobacco-
consumption, lung function, and gene expression quantitative
trait loci (eQTL). We then performed polygenic risk scores (PRS)
analyses based on the genome-wide significant variants from
this expanded GWAS, as well as a novel variant method that se-
lected variants (including subgenome-wide significant variants)
that shared association with LC-related traits. Finally, we inves-
tigated how these LC PRSs affect the somatic mutation environ-
ment in patients whose tumors have been characterized by
exome or whole genome sequencing (WGS).

Methods

Statistical Analysis

All statistical tests described below were 2-sided. A family his-
tory GWAx analysis of LC was undertaken using the method de-
scribed by Liu et al. (14). After applying genotyping quality
control metrics to exclude suboptimal genotypes and samples
and limit genetic ancestry analysis to European decent
(Supplementary Table 1 and Supplementary Materials, available
online), 48 843 individuals with a family history of LC and
195 387 controls with no reported cancer diagnosed or reported
family members with cancer were identified from the UK
Biobank. A GWAx was performed using unconditional logistic
regression model (with adjustment for age, sex, array type,
number of siblings, and principal components from genetic-in-
ferred ancestry). Association statistics were corrected to ac-
count for the genetic dilution related to the GWAx by doubling
beta coefficients and standard error as described previously
(14). Adjusted statistics from the UK Biobank GWAx and a

previous LC GWAS (Transdisciplinary Research In Cancer of the
Lung) cohort—29 266 patients and 56 450 controls—
(Supplementary Materials, available online) were meta-ana-
lyzed using METASOFT under a fixed-effects assumption based
on the inverse-variance-weighted effect size (16). Statistical sig-
nificance (genome-wide significance) was defined as a P value
less than 5 x 10-8. Independent genetic variants at a given locus
were defined using linkage disequilibrium (LD) clumping (with a
LD threshold of R2 < 0.1 and a window size of 10 000 kb). Genetic
correlation (rg) between the GWAx and the GWAS was esti-
mated using LD score regression, which was performed using
the LDSC package (17).

Colocalization Analysis

Colocalization of genetic associations between LC, gene expres-
sion, and related traits was calculated using the COLOC package
(https://github.com/anthony-aylward/coloc) (18) using default
thresholds and a window size of 75 kb. eQTLs within lung tis-
sues or brain regions related to addiction (substantia nigra, nu-
cleus accumbens, frontal cortex, putamen, caudate) were
obtained from the Genotype-Tissue Expression (GTEx) project
(19). GWAS summary statistics were obtained from the GWAS &
Sequencing Consortium of Alcohol and Nicotine use (GSCAN)
for smoking behaviors, and summary statistics from additional
related traits (forced vital capacity [FVC] and coffee consump-
tion) were retrieved from OpenGWAS (20,21) (Supplementary
Materials, available online). For this manuscript, we report the
posterior probability of colocalization for a single shared variant
responsible for the associations in both traits (posterior proba-
bility for hypothesis 4 [PP4]).

PRS Analysis

The PRSs were computed as the sum of the individuals
weighted genotypes using PLINK and PRSice-2 software with
the PRS subsequently scaled to a normalized distribution
(Supplementary Materials, available online) (22,23). Genotyping
weighting was derived from the estimates (log odd ratios) from
the LC GWAx-GWAS meta-analysis. Variants selected for PRS
inclusion were chosen by different criteria. First, we selected
variants that achieved genome-wide significance (GWS) in the
GWAx-GWAS meta-analysis (gwPRS). Second, a partial least
squares (PLS) method was used to select variants involved with
both LC and smoking (smPRS) or gene expression (eQTLPRS)
based on previously published GWAS summary statistics and
the GTEx summary statistics (Supplementary Materials, avail-
able online). Finally, a combined PRS of the unique variants
from gwPRS, smPRS, and eQTLPRS was also considered
(Supplementary Materials, available online).

The PRS construction considered LD between variants (any
variant with R2 > 0.1 with a sentinel variant was excluded). The
PRSs were assessed in a validation cohort of 1 666 LC patients
and 6 664 controls from the UK Biobank that were not included
in the GWAx described above. Unconditional logistic regression
was used to test the association between PRSs and LC, with sex,
array type, age of recruitment, and the first 5 principal
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components from genetic-inferred ancestry as covariates.
Regression results are reported as an odds ratios unit change
per a standard deviation in the PRS distribution.

Somatic Mutation Analysis

The association between the PRSs and somatic mutational bur-
den was tested in The Cancer Genome Atlas (TCGA) cohorts of
685 LC samples of European ancestry and in an independent co-
hort of 61 LC patients samples, identified from central and east-
ern Europe (13). Germline genotypes were derived from
Affymetrix arrays which was accessed via the database of
Genotypes and Phenotypes (dbGAP) (application Project #2731)
using single nucleotide polymorphism (SNP) imputation to the
1000 Genome phase 3 reference panel (Supplementary
Materials, available online). TCGA somatic mutations (derived
from WGS) were retrieved from the study of Ellrott et al. (24). In
the replication cohort, germline genotypes and somatic muta-
tions were derived from WGS undertaken in the patients paired
normal tumor samples sequenced on a IlluminaX5 DNA se-
quencer (Supplementary Materials, available online). Total
number of mutations was computed as a mutational feature
and reported smoking tobacco-related signatures (cosmic signa-
ture annotation Single Base Substitution 4 (SBS4), Doublet Base
Substitutions 2 (DBS2), and Indel signature 83 [A and B] (ID83A,
ID83B) were generated using the SigProfiler pipeline
(Supplementary Materials, available online). To test the associa-
tion between the PRS and the tumor somatic mutational bur-
den, the PRS were regressed against tumor somatic mutational
burden as a continuous trait using Quasi-Poisson regression to
account for overdispersed and left skewed distributions of the
DNA mutational features. Covariates added in all PRS models
included age, sex, the first 5 principal components from genetic
inferred ancestry, tumor purity, and a categorical variable indi-
cating the cohort type as appropriate. Effect estimates are given
as incidence rate ratios (IRR). A P value less than .05 was consid-
ered as level of significance for PRS analyses. All statistical tests
performed to calculate P values were 2-sided tests.

Results

The 8 Novel Susceptibility Loci

The family history GWAS (GWAx) on 48 843 self-reported family
history LC patients and 195 387 controls from the UK Biobank
(Supplementary Table 1, available online) identified 5 loci
(5p15.33, 6p21.32, 12p13.33, 13q13.1, and 15q25.1) that had previ-
ously been discovered from the traditional GWAS previously
performed on the Transdisciplinary Research In Cancer of the
Lung cohort (Supplementary Table 2 and Supplementary Figure
1, available online). Genetic correlation using LD score regres-
sion confirmed a strong relationship between GWAx and the
GWAS (rg ¼ 1, SE¼ 0.066, P < .001) supporting the utility of the
GWAx approach to detect susceptibility loci.

Meta-analysis between the GWAx and the traditional LC
GWAS identified 65 variants that achieved a P value less than 5
x 10-8 across 23 distinct genomic loci defined by cytoband
(Figure 1) after LD clumping genetic variants (Supplementary
Table 2, available online). At previously described LC suscepti-
bility loci, the meta-analysis also identified independent (R2 <

0.1) low-frequency (minor allele frequency [MAF] < 0.05) var-
iants associated with LC at 5p15.33 (rs35812074), 19q13.2
(rs1801272), 15q25.1 (rs2229961, rs8192479, rs151118057), and

12p13.33 (rs7487683) in addition to the previously described
common genetic variants (Supplementary Table 2, available on-
line). At 13q13.1, where a rare LC susceptibility allele has been
described (rs11571833, K3326X BRCA2; MAF¼ 0.01), an indepen-
dent common susceptibility allele was also noted (rs11571734;
MAF¼ 0.28).

Eleven LC susceptibility variants at 8 loci have previously not
been associated with LC at genome-wide (GW) significance
(Figure 1). We explored these loci using colocalization with traits
related to LC; smoking behavior; gene expression, particularly
in the lung epithelium and brain (addiction); and lung function.
Using the GSCAN summary statistics, we observed that the LC
susceptibility variants at 1q21.3-rs78062588, 6p22.2-rs7766641,
and 20q13.33-rs11697662 were also associated at GW signifi-
cance with traits related to propensity to smoke tobacco
(Supplementary Table 2, available online). The sentinel variants
at 1q21.3-rs78062588 and 20q13.33-rs11697662 are also eQTLs
for the nicotinic acetylcholine receptors (nAChRs) subunits
CHRNB2 and CHRNA4 (Figure 2, A and B; Supplementary Tables
2 and 3, available online). At 6p22.2, LC susceptibility loci were
noted (Supplementary Table 2, available online), typified by 2
sentinel variants: rs6913550 and rs7766641. rs7766641 was also
associated with propensity to smoke (colocalization between
GSCAN cigarettes per day [CPD] and LC: PP4¼ 99%), whereas, cu-
riously, rs6913550 was not (colocalization between CPD and LC:
PP4¼ 0%) (Supplementary Table 2, available online).

At 1q32.1, 11p11.2, 11q24.2, and 15q24, the sentinel variants
(rs4252707, rs72905558, rs61612408, rs12441817, respectively)
were not associated with smoking behaviors (colocalization be-
tween CPD and LC for all 4 variants: PP4¼ 0%). 11q24.2-
rs61612408 was associated with the expression of the CHEK1
gene in multiple tissues including lung epithelia. Further, there
was evidence for colocalization between these associations
(colocalization between CHEK1 lung eQTL and LC: PP4¼ 91.7%),
with the allele associated with increased expression correlating
with decreased risk of LC (Figure 2, C). The 15q24-CYP1A1 locus
has been associated with multiple traits, including coffee con-
sumption (20) and FVC (21). In this study, there was evidence for
colocalization with LC but only for FVC (colocalization for
rs12441817 between coffee consumption and LC: PP4¼ 0.00%;
colocalization between FVC and LC: PP4¼ 97.05%)
(Supplementary Figure 2, available online). There was also
colocalization for rs12441817 and CYP1A1 expression in the nu-
cleus accumbens (colocalization: PP4¼ 93.52%) (Supplementary
Figure 3, available online) and an eQTL effect with the processed
pseudogene RP11-10O17.1 in lung tissue (colocalization between
eQTL RP11-10O17.1 and LC: PP4¼ 99.02%) (Figure 2, D). At 4q13.2-
rs185666783, the candidate genes remain ambiguous.

PRS Evaluation

Next, we constructed PRSs from variants selected from our
meta-analysis and tested their ability to predict LC risk in a
validation cohort of 1 666 LC patients and 6 664 matched con-
trols from the UK Biobank. First, we selected 65 independent
variants that reached a GWS threshold from our meta-
analysis. This PRS was associated with LC (gwPRS: odds ratio
[OR] per standard deviation increase in PRS¼ 1.27, 95% confi-
dence interval [CI] ¼ 1.20 to 1.35; P < .001) (Figure 3). We also
sought to select relevant variants that did not pass the GWS
threshold. As many of LC GWS variants identified by our meta-
analysis also tended to be associated with smoking behaviors
and/or eQTLs (Supplementary Table 2, available online), we
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used PLS of published GWAS summary statistics (GSCAN and
GTEx) to identify variants associated with LC as well as smok-
ing behaviors and/or eQTL features (see Supplementary
Materials). There appeared to be an excess of evidence for as-
sociation with LC in an important number of the variants se-
lected by this approach (Figure 3, A). Two polygenic risk scores,
smPRS (80 variants) and eQTLPRS (961 variants), were con-
structed using the non-GWS variants selected by this PLS ap-
proach, with number of variants selected guided by the degree
of enrichment observed (see Supplementary Materials, avail-
able online; Figure 3, A and B). Both PRSs were associated with
LC in the validation LC patient-control cohort implying these
non-GWS genetic variants are enriched for susceptibility
alleles and add value to risk prediction (Figure 3, C). Lastly, we
constructed a combined PRS (1049 variants) from the GWS var-
iants, eQTL, and the smoking propensity variants, which im-
proved LC risk prediction in this independent series (OR¼ 1.37,
95% CI ¼ 1.29 to 1.45; P< .001).

PRS Germline Influences on Mutational Burden and
Mutational Signatures

Finally, we evaluated the association of the GWS PRS (gwPRS),
smoking propensity PRS (smPRS), eQTLPRS, and the combined
PRS with somatic mutational burden. In the analysis of 685 lung
tumors from TCGA, there was no evidence for association in-
volving the GWS PRS (IRR¼ 1.03, 95% CI ¼ 0.96. to 1.10; P¼ .44),
eQTLPRS (IRR¼ 1.05, 95% CI ¼ 0.9 to 1.13; P¼ .14) and the com-
bined PRS (IRR¼ 1.03, 95% CI ¼ 0.96 to 1.10; P¼ .37) on mutation
burden (Supplementary Figure 5, available online), however
smPRS was associated with somatic mutation load (IRR¼ 1.12,
95% CI ¼1.04 to 1.19; P¼ < .001) (Figure 4, A). The smPRS was

similarly associated with burden of mutational signatures at-
tributed to tobacco smoke (SBS4 : IRR¼ 1.18, 95% CI ¼ 1.09 to
1.29; P < .001) (Figure 4, B) and was also observed in somatic
insertions and deletions mutation signatures related to tobacco
smoke: DBS2 (IRR¼ 1.17, 95% CI¼ 1.05 to 1.29; P¼ .003), ID83A
(IRR¼ 1.21, 95% CI ¼ 1.07 to 1.37; P¼ .002), and ID83B (IRR¼ 1.13,
95% CI¼ 1.01 to 1.27; P¼ .04), respectively (Supplementary
Figure 6, available online). These associations were observed
more prominently in patients with Lung
Adenocarcinoma (IRR¼ 1.18, 95% CI ¼ 1.06 to 1.31; P¼ .002)
(Figure 4, A). The 15q25 CHRNA5 LC sentinel variant rs55781567
had the most striking effect (average total mutation count of
327 for homozygous risk carriers of the G allele compared to 283
in homozygous nonrisk carriers of the C allele) (Supplementary
Figure 7, available online), but the associations remained signif-
icant after excluding GW variants for LC (Figure 4, A). The asso-
ciation between the smPRS and somatic mutation burden was
replicated in 61 patients who have undergone WGS (IRR¼ 1.39,
95% CI¼ 1.03 to 1.89; P¼ .04) (Supplementary Figure 8, available
online).

Discussion

This study identified 23 LC susceptibility loci, including 8 novel
loci, by combining large, genotyped biobank data and traditional
GWAS. Of the 8 novel loci, 3 were also associated with propen-
sity to smoke. This included brain eQTLs variants for both subu-
nits of the neuronal nAChRs a4b2 receptor. Variants in LD with
the a4 subunit (rs2373500) have been described in nicotine de-
pendency and LC risk, albeit not at GW significance for LC (25),
whereas the b2 receptor association with LC risk has not been
previously described. The neuronal nAChRs a4b2 receptor is the
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Figure 1. Manhattan plot of the meta-analysis of the genome-wide by proxy (GWAx) with genome-wide association study (GWAS) into lung cancer. The Manhattan

plot displays the results of the meta-analysis of the GWAx (48 843 proxy patients and 195 387 controls without a family history of any cancer) and the Transdisciplinary

Research In Cancer of the Lung GWAS (29 266 patients and 56 450 controls) with already identified and novel loci noted with the likely candidate gene name presented.

The table represents the newly 11 independent loci across 8 distinct cytoband regions (sites with 2 independent hits are denoted by * within the cytoband column). The

x-axis is the chromosome position across the autosomal chromosomes, and the y-axis contains the association level displayed as the -log10(P value), derived by a mul-

tivariate logistic regression model. The dotted line displays the genome-wide significance threshold (5 x 10-8). L95% ¼ lower bound confidence interval; OR ¼ odds ratio;

U95% ¼ upper bound confidence interval.
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C D

Colocalization between CHRNB2
putamen eQTL and LC PP = 98.8%

Colocalization between CHEK1 lung
eQTL and LC PP = 91.7%

Colocalization between RP11-10017
lung eQTL and LC PP = 99.02%

Colocalization between CHRNA4
putamen eQTL and LC PP = 99.7%

Figure 2. Brain and lung eQTLs discovered within the 8 novel loci. Colocalization plots between lung cancer (x-axis) and CHRNB2 putamen expression (1q21.3) A)

CHRNA4 putamen expression (20q13.33); (B) CHEK1 lung expression (11q24.2); (C) RP11-10O17.1 lung gene expression (15q24); (D) (y-axis). Each variant and eQTL status

were compared using COLOC for colocalization to confirm that the lung cancer SNP was the same SNP driving the eQTL effect in both brain and lung tissues, the

Bayesian posterior probability (PP4) of each gene was tested. Stars indicate the variant of interest and shading scaled representing the level of LD shared between other

markers with sentinel variant (r2 > 0.8; r2 > 0.4; r2 > 0.1). eQTL ¼ expression quantitative trait loci; LC ¼ lung cancer; LD ¼ linkage disequilibrium; SNP ¼ single nucleo-

tide polymorphism.

Figure 3. Germline polygenic risk score construction using smoking and eQTL related SNPs and performance testing within the UK Biobank lung cancer cohort. A) The

mean lung cancer association statistics calculated by variant bins (100 variants per bin) ranked by partial least squares (PLS) components. Variants (clumped on LD

based on lung cancer P values) were ranked based on PLS components for smoking propensity (Component1_smoking, top) and eQTLs (Component1_eQTL, [B]) (x-axis)

and plotted against the mean lung cancer Z statistics calculated across variants in each bin (y-axis). Bin values that exceed 3 SDs from the mean are noted, with the ex-

cess observed (number of bins smoking propensity ¼ 9, number of bins eQTL ¼ 37) implying that the variants within these bins are enriched for LC-susceptibility

alleles. C) A forest plot of the performance of the constructed PRSs in comparison to the PRS based on the 65 GWS independent loci as a baseline which included array

type, sex, age of recruitment and the first 5 principal components from genetic-inferred ancestry). CI ¼ confidence interval; eQTL ¼ expression quantitative trait loci;

LC ¼ lung cancer; LD ¼ linkage disequilibrium; GWS ¼ genome-wide significant; OR ¼ odds ratio; PRS ¼ polygenic risk scores; SNP ¼ single nucleotide polymorphism.

A
R

T
IC

LE

A. A. G. Gabriel, J. R. Atkins et al. | 1163



most abundant nAChR subtype within the human brain and im-
portant within the dopaminergic signaling pathway. The a4b2
receptor has a key role in nicotine dependence behaviors (26)
and is a major target in nicotine addiction intervention (27,28).
The third novel locus related to LC and propensity to smoke is
telomeric to the major histocompatibility complex (MHC) re-
gion, where the target candidate gene(s) is less obvious. The
MHC region was among the first susceptibility loci to be associ-
ated with LC (6,29–31). However, rs7766641 is not in LD with
these previously described variants (R2 < 0.001) and associated
with the number of CPD, implying that these are distinct
associations.

This meta-analysis also identified additional LC susceptibil-
ity loci that appear to be independent of smoking propensity.
These included variants at 15q24 near CYP1A1, CYP1A2, and
CYP11A1 that participate in the metabolism of many different
xenobiotics and some endogenous substrates. Variants at the
15q24 CYP1A1 and CYP1A2 locus have been linked with multiple
traits, notably other forms of propensity coffee consumption
(20) and FVC (21), although these variants associated to each
trait appear to be distinct. Colocalization appears to implicate
FVC as more likely to be involved in the LC association, and the
etiological link also seems more plausible considering aspects
of lung function and LC risk. For tissue expression, rs12441817
colocalized with lung tissue expression of the processed pseu-
dogene RP11-10O17.1 (Figure 2, D) although how this pseudo-
gene relates to LC susceptibility is unclear.

An additional novel LC susceptibility variant, rs61612408,
was a lung tissue eQTL for the DNA repair gene CHEK1 (Figure 2,
C). We additionally noted the variant rs4252707 impacting the

MDM4 gene, which is an important p53 regulator. This variant
was previously associated with nonglioblastoma tumors (32)
and more recently squamous cell carcinomas of the lung and
head and neck (33). At 11p11.2, despite evidence for an eQTL ef-
fect, colocalization analysis showed little evidence for involve-
ment with genes C1QTNF4 (lung) and MTCH2 (brain-cortex),
suggesting that these signals are unlikely to explain the LC as-
sociation. At 4q13.2, the finding remains ambiguous, but from
histological subtypes analysis performed from the previous
reported GWAS study, it appears that this signal is mostly found
in lung adenocarcinoma.

We additionally sought to use the shared genetic etiology be-
tween LC susceptibility, smoking-related traits, and gene expres-
sion annotations (eQTL) to explore variants that did not achieve
GW significance. We used the PLS method to select variants re-
lated to these traits for the PRS analyses and demonstrated that
such variants are indeed enriched for susceptibility alleles.
Although the role of these individual variants remains to be con-
firmed, these sub-GWS variants were located near relevant candi-
date genes (propensity to smoke candidates like CHNRA6 and
DBH, and eQTLs for ERCC2, RAD51C, XRCC3, and CASP8).
Combining both sub-GWS PRS lists (smPRS and eQTL PRS) with
GW-significant results reached an odds ratio of 1.37 per standard
deviation unit increase in score improving on previous PRS predic-
tions (OR ¼ 1.17 and 1.26, respectively) (34,35), despite the conser-
vative clumping approach (R2 < 0.1) employed. This suggests that
integrating functional annotations may be of interest for PRS
analysis.

Lastly, the analysis of the smPRS demonstrated an associa-
tion between a person’s genetic risk load and mutation burden
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Figure 4. Polygenic risk scores for smoking (smPRS) associations with total number of mutations and mutations attributable to SBS4 in TCGA cohort. A) Associations

with total number of mutations. B) Associations with SBS4 mutations. The left panels represent the distribution of the number of mutations in the smPRS quintiles.

The right panels correspond, respectively, to the forest plots of smPRS associations with total mutational burden (panel A) and SBS4 mutations (panel B). For each PRS,

the association was tested 1) in all lung cancer patients when considering all SNPs in the smPRS SNPs selection, 2) in all lung cancer patients when considering differ-

ent subsets of SNPs in the PRS computation, 3) stratifying by histology, and 4) stratifying by smoking status. CI ¼ confidence interval; IRR ¼ incidence rate ratios; LUAD

¼ Lung adenocarcinoma; LUSC ¼ Lung Squamous Cell Carcinoma; NA ¼ Not available; Q ¼ quintile; TCGA ¼ The Cancer Genome Atlas; SNP ¼ single nucleotide
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and/or burden of tobacco-related somatic mutational signa-
tures, within 2 independent patient cohorts and using different
sequencing methods (exome sequencing and WGS). These asso-
ciations appear consistent with the notion that genetic variants
influence individuals’ smoking behavior, which in turn influen-
ces their carcinogenic exposure, and consequently, their so-
matic mutation burden (36).

In conclusion, this work has increased the number of var-
iants associated with LC susceptibility, with the identification of
novel susceptibility loci. PRS analysis highlighted that many ad-
ditional variants remain to be discovered and provided insights
into the carcinogenic mechanisms.
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