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Abstract

Background

Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it

is unclear which individual factors directly influence risk. We addressed this question using

genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk

in a mendelian randomization (MR) framework. This methodology limits bias due to con-

founding and is not affected by reverse causation.

Methods and findings

Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes,

insulin, and glucose were initially identified as instrumental variables, and their association

with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of

10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The

effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation

(SD) increment in each risk factor. The MR analysis indicated that higher body mass index

increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44–1.70), with com-

parable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40–1.90) and body fat percent-

age (ORSD: 1.66, 95% CI 1.44–1.90). This analysis further indicated that higher fasting

insulin (ORSD: 1.82, 95% CI 1.30–2.55) and diastolic blood pressure (DBP; ORSD: 1.28,

95% CI 1.11–1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84–1.14),

increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2

diabetes, or fasting glucose.

Conclusions

This study provides novel evidence for an etiological role of insulin in RCC, as well as confir-

matory evidence that obesity and DBP influence RCC risk.

Author summary

Why was this study done?

• Traditional observational studies wherein putative risk factors are measured directly

have found several obesity-related factors associated with increased risk of renal cell car-

cinoma (RCC).

• Traditional observational studies are subject to confounding and reverse causation and

have not been able to disentangle which obesity-related risk factors directly influence

RCC risk.

Obesity-related factors and renal cell carcinoma
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• This study used an alternative methodology commonly referred to as mendelian ran-

domization (MR). MR circumvents many of the inherent limitations of traditional

observational study by use of genetic proxies of putative risk factors when evaluating

their associations with disease risk, as they are not subject to reverse causation and are

less likely to be confounded by other risk factors.

What did the researchers do and find?

• First, we used large-scale genome-wide association studies (GWAS) to identify genetic

variants associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin,

and glucose. Second, these genetic variants were used as proxies for the above-men-

tioned risk factors and evaluated in relation RCC risk using GWAS data from 10,000

RCC patients and 20,000 control participants.

• Based on these genetic data, we found that multiple measures of obesity, as well as dia-

stolic blood pressure (DBP) and fasting insulin, are associated with RCC risk. In con-

trast, we found little evidence for an association with RCC risk for systolic blood

pressure (SBP), circulating lipids, overall diabetes, or fasting glucose.

What do these findings mean?

• This study provided robust and confirmatory evidence of an important role of obesity

as an important risk factor of RCC.

• Further confirmatory evidence was found for elevated DBP as a risk factor of RCC, but

it is not clear why DBP rather than SBP is important in RCC.

• The study, to our knowledge, provided novel evidence of an important role of circulat-

ing insulin in RCC etiology.

• This study provided some novel insights into the pathways involved in mediating the

risk increase in RCC that is caused by obesity, most notably through insulin and DBP,

but further research is needed to fully elucidate the important relationship between obe-

sity and RCC.

Introduction

The etiology of renal cell carcinoma (RCC) is only partly understood [1]. An increased risk of

RCC has been observed for individuals with high body mass index (BMI), elevated blood pres-

sure, and triglycerides [2]. However, these obesity-related exposures are inherently interre-

lated, and traditional epidemiological studies have not been able to untangle which individual

factors directly influence RCC risk and which are merely correlated with the underlying causal

factor.

Mendelian randomization (MR) is an analytical approach whereby germline genetic mark-

ers are used as proxies—or instrumental variables—for putative risk factors. These genetic

markers cannot be influenced by reverse causation (i.e., the disease affecting the exposure)

[3], and assuming an absence of pleiotropy (i.e., genetic variants associated with the disease

through alternative pathways) can provide unconfounded estimates of disease risk [4]. MR-
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based studies can therefore circumvent many of the inherent limitations of traditional observa-

tional studies, and an association between genetic proxies and the disease of interest would

indicate that the risk factor being proxied influences risk in a causal manner [5].

We evaluated the role of obesity-related factors in RCC etiology using a two-sample MR

framework wherein genetic variants associated with 13 relevant risk factors were identified

from genome-wide association studies (GWASs). Subsequently, we evaluated the association

of these genetic variants with RCC risk in a large RCC GWAS comprising 10,784 RCC patients

and 20,406 control participants.

Materials and methods

Analytical strategy

The goal of our analytical strategy was to clarify the role of obesity and obesity-related risk fac-

tors in RCC etiology using a two-sample MR framework. This involved reviewing the GWAS

literature to identify obesity-related risk factors for which valid proxy single nucleotide poly-

morphisms (SNPs) could be identified or by carrying out de novo GWAS analyses (e.g., for

risk factors measured in UK Biobank) (first sample). This led to assembling SNP-based instru-

mental variables for obesity-related factors that were evaluated in relation to risk in the largest

RCC GWAS published to date (second sample) [6]. This MR-based risk analysis involved

using the likelihood-based approach to estimate the RCC odds ratio (OR) associated with a

standard deviation (SD) increment in each risk factor of interest, with several complementary

MR methods being applied to evaluate consistency in association estimates and between-study

heterogeneity. No changes to the analytical strategy were done following the initial analysis.

Further details on the specific methods used are indicated in the Statistical analysis section

below.

Identification of genetic markers as instrumental variables for obesity-

related factors (first sample)

Genetic markers for various obesity-related risk factors comprised SNPs that were associated

with the risk factor of interest (P< 5 × 10−8) based on study participants with European ances-

try. Correlated SNPs were excluded based on measures of linkage disequilibrium (LD) R2 <

0.1. Instruments for BMI and waist-to-hip ratio (WHR) were identified from meta-analyses

of GWASs in approximately 700,000 individuals of European ancestry. GWAS data from the

Genetic Investigation of ANthropometric Traits (GIANT) consortium (approximately 325,000

participants) [7,8] were combined with GWAS data from UK Biobank (approximately 375,000

individuals). SNPs associated with body fat percentage (%) were also identified using UK Bio-

bank GWAS data. UK Biobank released genetic data for 488,363 individuals, from which we

used data on participants of European descent with valid BMI, WHR, and body fat percentage

measurements (374,237, 374,722, and 368,690 individuals, respectively). Genetic instruments

for systolic blood pressure (SBP) and diastolic blood pressure (DBP), as well as pulse pressure

(PP), were obtained from a GWAS in 375,091 European UK Biobank samples. These GWAS

analyses were performed using Plink software [9], adjusted for age, sex, genotyping array, and

principal components for population stratification as well as manual or automated blood pres-

sure measurements. Instruments for circulating high-density lipoprotein cholesterol (HDL)

and low-density lipoprotein cholesterol (LDL), total cholesterol, and triglycerides were identi-

fied from the Global Lipids Genetics Consortium (GLGC) study [10]. Instruments for circulat-

ing factors related to hyperglycemia and hyperinsulinemia, including fasting glucose and

fasting insulin, were identified from the Meta-Analysis of Glucose and Insulin-Related Traits

Obesity-related factors and renal cell carcinoma
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Consortium (MAGIC) [11,12]. Finally, instruments for type 2 diabetes were identified from a

genetic fine-mapping study by Gaulton and colleagues [13]. Because SNPs associated with risk

of type 2 diabetes may act by increasing insulin resistance or affecting pancreatic beta-cell

function, we also evaluated subgroups of type 2 diabetes SNPs by stratifying for these two

pathophysiologic mechanisms [14].

SNPs with ambiguous strand codification (A/T or C/G) were replaced by SNPs in genetic

linkage (R2 > 0.8) using the proxysnps R package (European populations) (R Project) or were

removed from the analyses if the minor allele frequency was higher than 0.4. For each SNP

included in the different instrumental variables, the genetic effect estimate on exposure

expressed in SDs of the trait per allele (βGE) was retrieved from each respective GWAS, along

with the corresponding standard errors (SEGE). Table 1 provides details on the number of

SNPs that constituted the instrumental variable for each potential risk factor, the proportion of

variance explained by the instrument (or cumulative SNP liability in the case of type 2 diabe-

tes), and the mean and SD of the respective risk factors in the original discovery study. Effect

estimates for each individual SNP regarding their association with risk factor (βGE) are pre-

sented in S1 Table.

RCC association results (second sample)

To evaluate the association of each SNP used in the respective instrumental variables with

RCC risk, we used summary genetic effect estimates on RCC risk (βGD) with the correspond-

ing standard errors (SEGD) from the most recent GWAS on RCC [15]. This study encom-

passed data from 31,190 study participants, including 5,586 RCC patients and 13,075 control

participants from previous GWASs [16–20], as well as an additional 5,198 RCC patients and

7,331 control participants with new GWA data, resulting in a total of 10,784 RCC patients and

20,406 control participants. These samples comprised prospective and retrospective case-con-

trol studies coordinated by four institutes, including the International Agency for Research on

Table 1. Description of SNPs used as instrumental variables for obesity-related factors.

Risk factor (source) Mean (SD)a Units n SNPb Variance (%)c

BMI [7,8] (UK Biobank) 27.2 (4.7) kg/m2 709 9.5

WHR [7,8] (UK Biobank) 1.0 (0.1) cm/cm 355 2.9

Body fat percentage (UK Biobank) 31.8 (6.6) (%) 398 3.5

SBP (UK Biobank) 140.3 (19.6) mmHg 199 3.1

DBP (UK Biobank) 82.2 (10.9) mmHg 233 3.7

PP (UK Biobank) 59.1 (14.5) mmHg 260 4.6

HDL [10] 53.3 (15.5) mg/dL 69 13.7

LDL [10] 133.6 (38.0) mg/dL 52 14.6

Total cholesterol [10] 213.28 (42.6) mg/dL 70 15.0

Triglycerides [10] 140.85 (87.8) mg/dL 41 11.7

Fasting glucose [11,12] 5.2 (0.8) mmol/L 37 4.8

Fasting insulin [11,12] 56.9 (44.4) pmol/L 17 1.2

Type 2 diabetes [13] - - 39 5.7

aMean and SD for each risk factor in the original discovery study for the SNPs used as instrumental variables.
bNumber of SNPs used in the instrument variable when evaluating each risk factor of interest with risk.
cVariance explained by the instrumental variable for each risk factor as indicated in the discovery GWAS (see marker publication).

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; GWAS, genome-wide association study; HDL, high-density lipoprotein cholesterol; LDL, low-

density lipoprotein cholesterol; PP, pulse pressure; SBP, systolic blood pressure; SD, standard deviation; SNP, single nucleotide polymorphism; WHR, waist-to-hip ratio.

https://doi.org/10.1371/journal.pmed.1002724.t001
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Cancer (IARC), the United States National Cancer Institute (NCI), MD Anderson Cancer

Center (MDA), and United Kingdom cancer research centers (UK) (S2 Table). Sex-stratified

analyses were performed for study participants from the IARC study sample (3,227 male RCC

patients and 4,915 male control participants; 1,992 female RCC patients and 3,095 female con-

trol participants). SNPs with an imputation quality score (R2 or info score) lower than 0.7 were

not used in the MR analysis. Effect estimates for association with disease risk for each SNP

(βGD) can be observed in S1 Table.

Statistical analysis

A priori power calculations for the MR analysis to detect an association of nominal statistical

significance (P< 0.05) were performed for instrumental variables explaining a range in vari-

ance of a causal risk factor, using the method proposed by Burgess [21]. Fig A in S1 Text

depicts the statistical power of instrumental variables for different levels of explained variance

for the risk factor of interest.

ORSD were calculated as effect estimates on RCC risk for an SD increment for each risk fac-

tor of interest using the corresponding instrumental variable. The primary MR analysis and the

instrumental SNP heterogeneity analysis were conducted using the likelihood-based approach

described by Burgess and colleagues [6]. Heterogeneity of initial effect estimates between the

four data sources were investigated by estimating the percentage of variance that is attributable

to study heterogeneity (I2 statistic). The P value for heterogeneity (PStudy-Heterogeneity) assumed

a fixed-effect model with 3 degrees of freedom. For the sex-stratified risk analysis, the P value

for heterogeneity (PSex-Heterogeneity) was obtained from a fixed-effect model with 1 degree of

freedom.

As a sensitivity test, the presence of pleiotropy (i.e., genetic contribution to disease

risk through a separate pathway) and potential outlier SNPs among genetic instruments

were assessed using a novel approach labeled “MR pleiotropy residual sum and outlier”

(MR-PRESSO) [22]. SNPs behaving as outliers were excluded from the instrument, and the

effect estimate for the relevant risk factor of interest was reassessed. We also provided OR

estimates using the complementary weighted-median method, wherein the effect estimate is

weighted toward the median of the distribution of SNPs used in the instrumental variable

[23]. This approach is less sensitive to individual SNPs strongly influencing the overall effect

estimate. Furthermore, to evaluate the extent to which directional pleiotropy (nonbalanced

horizontal pleiotropy in the MR risk estimates) may affect the ORSD estimates, we used an

Egger regression approach (SIMEX version that does not assume the absence of measure-

ment error on the βGE estimate) [24]. As a visual evaluation of pleiotropy, we also provided

funnel plots depicting the weight exerted on the effect estimate along the y-axis (βGE/SEGD)

and estimates of the effect on RCC along the x-axis (exp[βGD/βGE]) for each SNP used in

the corresponding instrumental variable. Finally, we removed one SNP at a time from the

instrument and reestimated the risk estimate to evaluate whether individual SNPs domi-

nated the overall effect estimate. Statistical analyses were performed using R (R Project) and

Plink [9].

Results

MR results of RCC for obesity-related risk factors

BMI, WHR, and body fat percentage. We estimated that each SD increment in BMI

(1 SD: 4.7 kg/m2) increased the risk of RCC by 56% (ORSD: 1.56, 95% confidence interval [CI]

1.44–1.70) (Fig 1; Fig B in S1 Text for study stratification). A similar increase in risk was also

seen for WHR (1 SD: 0.1 cm/cm) (ORSD: 1.63, 95% CI 1.40–1.90) (Fig 1; Fig C in S1 Text for
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study stratification) and for body fat percentage (1 SD: 6.6%) (ORSD: 1.66, 95% CI 1.44–1.90)

(Fig 1; Fig D in S1 Text for study stratification). SNP heterogeneity (PSNP_heterogeneity =

9 × 10−8) and horizontal pleiotropy (PMR_PRESSO< 1 × 10−4) were observed for each obesity

instrument (S3 Table), but there was little evidence of outlier SNPs or directional pleiotropy

(PMR-Egger intercept> 0.12, S3 Table). The funnel plot for the BMI instruments (Fig 2A) indicated

a symmetric distribution of effect estimates, and the leave-one-out histogram (Fig E in S1

Text) did not indicate that any individual SNPs were driving the overall association with risk,

with similar results for WHR (Fig 2B and Fig F in S1 Text) and body fat percentage (Fig G in

S1 Text). Accordingly, the complementary weighted-median MR method provided similar

results (ORSD: 1.75, 95% CI 1.50–2.03, for BMI; ORSD: 1.45, 95% CI 1.14–1.86, for WHR;

ORSD: 1.63, 95% CI 1.31–2.03, for body fat %; S3 Table). Sex heterogeneity was not observed in

the IARC study sample (P> 0.41; Fig B–D in S1 Text).

Fig 1. Forest plot depicts OR estimates of RCC for the instrumental variables defined by genetic markers of obesity-related risk factors. aNumber of SNPs

used in each instrumental variable. bOR of RCC associated with one SD increment for each risk factor, as estimated using the instrumental variable. These ORs

were estimated using the likelihood method. CI, confidence interval; OR, odds ratio; RCC, renal cell carcinoma; SD, standard deviation; SNP, single nucleotide

polymorphism.

https://doi.org/10.1371/journal.pmed.1002724.g001
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Blood pressure. The MR analysis indicated that DBP (1 SD of DBP: 10.9 mmHg) (ORSD:

1.28, 95% CI 1.11–1.47) (Fig 1; Fig H in S1 Text for study stratification), but not SBP (ORSD:

0.98, 95% CI 0.84–1.14) (Fig 1; Fig I in S1 Text for study stratification), influences RCC risk (P
for difference in OR: 0.01). In accordance with the risk association of DBP, we also observed

an inverse association for PP with RCC risk (ORSD: 0.77, 95% CI 0.68–0.88) (Fig J in S1 Text

for study stratification). Sensitivity analyses did not detect any nonbalanced pleiotropic effect

biasing the DBP risk estimates (S3 Table), and the funnel plot demonstrated a symmetric dis-

tribution of effect estimates from DBP SNPs (Fig 2C). The leave-one-out histogram for DBP

can be seen in Fig K in S1 Text. Funnel plots and leave-one-out histograms for SBP and PP can

be observed in Fig L and Fig M in S1 Text, respectively. In the IARC study samples, sex hetero-

geneity was not observed for DBP and SBP. However, the inverse association for PP with RCC

risk was observed in men (ORSD: 0.74, 95% CI 0.58–0.94) but not in women (ORSD: 1.25, 95%

CI 0.93–1.69) (PSex-heterogeneity = 7 × 10−3) (Fig J in S1 Text).

Blood lipids. For blood lipid levels—including HDL, LDL, total cholesterol, and triglycer-

ides—the MR analysis indicated little evidence for an influence on RCC risk, with the overall

Fig 2. Funnel plots depict the weight exerted for each SNP used in the genetic instruments, along the y-axis (βGP/SEGD), into the estimated effect on RCC odds,

along the x-axis (exp[βGD/βGP]), for (A) BMI, (B) waist-to-hip ratio, (C) diastolic blood pressure, and (D) fasting insulin. Funnel plot x-axis is in logarithmic

scale. BMI, body mass index; MR, mendelian randomization; OR, odds ratio; RCC, renal cell carcinoma; SD, standard deviation; SNP, single nucleotide

polymorphism.

https://doi.org/10.1371/journal.pmed.1002724.g002
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ORSD estimates ranging from 0.97 to 1.04 (P� 0.40, Fig 1, Fig N-Q in S1 Text for stratified

analyses, Fig R–U in S1 Text for sensitivity analyses).

Type 2 diabetes, insulin, and glucose. Overall type 2 diabetes was not associated with

RCC risk (ORSD: 0.99, 95% CI 0.93–1.05), but when analyzing subgroups related to type 2 dia-

betes in a secondary analysis, SNPs related to beta-cell dysfunction were nominally inversely

associated with risk (ORSD: 0.91, 95% CI 0.83–0.99), and SNPs related to insulin resistance

were nominally positively associated with risk (ORSD: 1.37, 95% CI 1.02–1.84) (Fig 1). Notably,

fasting insulin was positively associated with RCC risk, with each SD increment (44.4 pmol/L)

increasing RCC risk by 82% (ORSD: 1.82, 95% CI 1.30–2.55) whereas little evidence was seen

for a role of fasting glucose in RCC (P = 0.43) (Fig 1). No clear evidence of heterogeneity by

study or sex was observed for any of the diabetes-related risk factors (Fig V–X in S1 Text), nor

did the Egger regression or other sensitivity analyses indicate the presence of pleiotropy (S3

Table and Fig Y–AA in S1 Text).

Discussion

This MR analysis confirmed a role for higher BMI and DBP in RCC etiology and provided

novel evidence for a role of fasting insulin. In contrast, we found little evidence for a role of

other obesity-related risk factors RCC etiology, with evaluated risk factors including diagnosis

of type 2 diabetes, SBP, and blood lipid levels.

There is an abundance of observational studies implicating obesity in RCC development,

and several reviews have concluded that there is convincing evidence that being overweight or

obese increases RCC risk [25,26]. Although a previous MR analysis on obesity and RCC did

not provide unequivocal support for such a relation, the statistical power of that study was

limited by a small sample size [27]. The current study leveraged results of several large-scale

GWAS initiatives on both the metabolic risk factors of interest and RCC risk. We identified

709 SNPs as instrumental variables for BMI through meta-analyses of the existing GIANT

GWAS and the novel UK Biobank GWAS, as well as results from our recent RCC GWAS ini-

tiative of over 10,000 RCC patients and 20,000 control participants. This enabled a well-pow-

ered two-sample MR analysis that provided strong support for a role of obesity and being

overweight in RCC etiology (Fig 1 and Fig A in S1 Text). In particular, we estimated that an

SD increment in BMI—approximately equivalent to 5 kg/m2—increases the risk of RCC by

56% (Fig 1). Considering that most observational studies have estimated risk increases of

approximately 30% per 5 units of BMI [25,26], these results are notable, as they suggest that

the impact of higher BMI and obesity in RCC etiology may be even more important than

previously thought. This difference in effect estimates may reflect an inherent weakness in

observational studies that use single direct measures of the risk factor of interest, whereas the

genetic variants used to proxy the risk factor in an MR study would be expected to reflect the

life-course exposure, thus better capturing the cumulative exposure.

Several additional obesity-related factors have been consistently implicated in RCC—in

particular, factors traditionally associated with the metabolic syndrome, which is defined as a

cluster of factors that increase the risk of type 2 diabetes and cardiovascular disease [28]. In

addition to obesity, these risk factors typically include impaired glucose tolerance or diabetes,

hypertension, and dyslipidemia [29,30]. The Metabolic Syndrome and Cancer (Me-Can) con-

sortium pooled individual-level prospective data on over half a million study participants and

estimated that men with high BMI, blood pressure, and blood triglycerides have up to a 3-fold

risk increase of RCC compared to men without these conditions, and some have suggested

that these risk factors exert independent effects on RCC risk [2,29]. When we used genetic

markers for these risk factors, we observed a positive association between DBP and RCC,
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whereas no association with risk was seen for SBP nor for blood lipids, including HDL, LDL,

total cholesterol, and triglycerides. Based on the fraction of variance explained by the instru-

mental variables of these factors (Table 1), we estimated that there was sufficient statistical

power (>80%) to detect even modest log-linear relative risks of 1.2 per SD increment in a risk

factor and close to complete statistical power (100%) to detect relative risks of 1.5 (Fig A in S1

Text). As such, this MR-based analysis did not support a role of SBP and blood lipids in RCC

[2]. However, the positive association between the instrumental variable of DBP with risk is in

line with previous epidemiological evidence. We also note that the difference in risk effect esti-

mates between the DBP and SBP was significant, suggesting that it was not due to chance and

lack of statistical power [2,31]. The mechanisms by which elevated blood pressure might influ-

ence RCC development are not established, but several plausible mechanisms have been sug-

gested, including by influencing angiogenesis, growth factors, and renal function, thereby

making the kidney more susceptible to carcinogens [31]. We are not aware of any hypothesis

for why DBP rather than SBP would be important in RCC, but note that some epidemiological

studies have indicated a stronger association with risk for DBP than for SBP [31].

We further observed a strong association between the instrumental variables of fasting insu-

lin and RCC risk (Fig 1). In particular, we estimated that one SD increment in fasting insulin

results in 82% increased risk of RCC. Whereas no association with RCC risk was seen for type 2

diabetes, we found an inverse association with risk for SNPs related to beta-cell dysfunction

and a positive association with risk for SNPs related to insulin resistance, even though these

subanalyses were conducted with limited statistical power. Insulin resistance may lead to com-

pensatory hyperinsulinemia when pancreatic beta cells increase insulin secretion to maintain

normal blood glucose. The contrasting associations with risk for the beta-cell dysfunction and

insulin-resistance SNPs would therefore lend further support for a role of insulin in RCC etiol-

ogy, as well as explain the lack of association with RCC risk for overall type 2 diabetes. Based

on previously published data on the relationship between fasting insulin and BMI [32], we esti-

mated that approximately one-fifth of the effect of BMI on RCC risk would be mediated by fast-

ing insulin. Whereas the experimental data on the role of insulin in RCC tumorigenesis are still

limited [33], there is ample in vivo and in vitro data describing pro-proliferative and antiapop-

totic properties of insulin together with insulin-like growth factor 1 (IGF1) [33–35]. Prospective

studies evaluating the association between directly measured fasting insulin (prediagnostically)

and RCC risk are further warranted, and improving our understanding of insulin and IGF1 sig-

naling in RCC development and progression may also offer therapeutic opportunities [36].

An overarching observation was that little evidence was found for sex heterogeneity in the

relation between any of the risk-associated factors and RCC. This result is interesting, as it con-

trasts with some traditional observational studies that have reported stronger associations for

obesity-related factors with RCC risk among women [37,38].

In conclusion, this study confirmed the important role of being overweight and having ele-

vated DBP in affecting RCC risk and provided novel evidence for an etiological role of elevated

insulin. The study gave little support for SBP or blood lipids and glucose being important in

RCC. Taken together, these results advance our understanding of RCC etiology but highlight

the need for further research focused on understanding how DBP and insulin-related path-

ways affect RCC risk, as well as complementary research aiming to identify additional path-

ways explaining the mechanisms by which obesity influences RCC development.

Supporting information

S1 Table. Association parameters of instrumental SNPs of obesity-related risk factors for

RCC. aBeta-cell dysfunction SNPs within type 2 diabetes. bInsulin resistance SNPs within
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type 2 diabetes. Β, beta estimate; BMI, body mass index; BP, base position; CHR, chromo-

some; DBP, diastolic blood pressure; EffAl, effect allele; GD, genotype-to-disease; GE, geno-

type-to-exposure; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein

cholesterol; OthAl, other allele; PP, pulse pressure; SBP, systolic blood pressure; SE, standard

error.

(PDF)

S2 Table. Description of the studies participating in the RCC GWAS meta-analysis.

GWAS, genome-wide association study; RCC, renal cell carcinoma.
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S3 Table. Pleiotropy assessment and risk increase of obesity-related factors on RCC pro-

vided by sensitivity tests. LCI, lower confidence interval; n SNPs, number of SNPs; OR, odds

ratio; P, P value; PSNP-Heterogeneity, heterogeneity P value between instrumental SNP causal
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