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Abstract
Renal cell carcinoma (RCC) has an undisputed genetic component and a stable 2:1 male to female sex ratio in its incidence
across populations, suggesting possible sexual dimorphism in its genetic susceptibility. We conducted the first sex-specific
genome-wide association analysis of RCC for men (3227 cases, 4916 controls) and women (1992 cases, 3095 controls) of
European ancestry from two RCC genome-wide scans and replicated the top findings using an additional series of men (2261
cases, 5852 controls) and women (1399 cases, 1575 controls) from two independent cohorts of European origin. Our study
confirmed sex-specific associations for two known RCC risk loci at 14q24.2 (DPF3) and 2p21(EPAS1). We also identified
two additional suggestive male-specific loci at 6q24.3 (SAMD5, male odds ratio (ORmale)= 0.83 [95% CI= 0.78-0.89],
Pmale= 1.71 × 10−8 compared with female odds ratio (ORfemale)= 0.98 [95% CI= 0.90–1.07], Pfemale= 0.68) and 12q23.3
(intergenic, ORmale= 0.75 [95% CI= 0.68-0.83], Pmale= 1.59 × 10−8 compared with ORfemale= 0.93 [95% CI= 0.82–1.06],
Pfemale= 0.21) that attained genome-wide significance in the joint meta-analysis. Herein, we provide evidence of sex-specific
associations in RCC genetic susceptibility and advocate the necessity of larger genetic and genomic studies to unravel the
endogenous causes of sex bias in sexually dimorphic traits and diseases like RCC.

Introduction

Kidney cancer is the 12th most common malignancy in the
world with estimated 337,860 new cases and 143,406
deaths in 2012 [1]. Renal cell carcinoma (RCC) accounts
for ~90% of all kidney cancers [2]. The incidence differs
significantly by sex, with two-fold higher rates for men than
women. The 2:1 sex ratio has been consistent over time,
across different age groups, geographical locations and
ethnic backgrounds; and, hence, the male excess cannot be
explained by differences in environmental or lifestyle
exposures and hormonal factors alone [3, 4]. Although there
is recent evidence of sexual dimorphism at the genomic
level, sex chromosome differences have gained most
attention [5]. The first comprehensive sex-specific somatic

alteration analysis of 13 cancer types from The Cancer
Genome Atlas (TCGA) revealed extensive sex differences
in autosomal gene expression and methylation signatures of
kidney cancer, although it did not consider germline var-
iation between sexes [6]. A genetic contribution to RCC
susceptibility is well documented. Besides the rare inherited
germline variants implicated in some familial RCCs, e.g.,
VHL (von Hippel-Lindau disease), MET (hereditary papil-
lary renal cancer), FLCN (Birt-Hogg-Dubé syndrome) and
FH (hereditary leiomyomatosis and renal cell cancer) genes
[7], large genome-wide association studies (GWAS) have
identified 13 autosomal RCC susceptibility loci implicating
several candidate genes (supplementary table 1) [8–13]. A
role for sex in modifying genetic susceptibility to RCC is
possible, but, unlike many other sexually dimorphic dis-
eases and traits [14–16], no genome-wide, systematic effort
to study possible sex specific genetic contributions to
kidney cancer risk has been undertaken.

We conducted a sex-specific genome wide association
analysis of kidney GWAS datasets consisting of 13,230
individuals (8193 men, 5087 women) using approximately
6 million genotyped and imputed SNPs in sex-stratified and
sex interaction models and replicated the top findings using
another 8113 men and 2974 women. To explore the
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possibility of sex-specific gene regulation of the top geno-
typic variants, we performed an expression quantitative trait
loci (eQTL) analysis using paired genotyping and gene
expression data from normal and kidney tumour tissues of a
subset of the genetic discovery cohort.

Methods

Genetic association analysis

Discovery

The International Agency for Research on Cancer (IARC)
kidney cancer GWAS have been previously described [12].
The dataset consisted of two IARC-Centre National de
Genotypage (CNG) scans using 11 studies recruited from
18 countries and included a total of 5219 RCC cases (1992
women, 3227 men) and 8011 controls (3095 women, 4916
men) of European descent, the first being genotyped using
HumanHap 317k, 550 or 610Q, and the second using
Omni5 and OmniExpress arrays. Quality control (QC)
assessments applied to the data have been previously
described [8, 12]. Briefly, we used the following quality
control measures at individual levels as exclusion criteria,
genotype success rate of < 95%, discordant sex, duplication
or relatedness based on IBD score > 0.185 and samples
with < 80% European ancestry. SNP exclusion criteria
included call rate < 90%, departure from Hardy Weinberg
equilibrium in controls at P < 10−7, and MAF < 0.05.
Imputation of genotypes was done by minimac version 3
using 1094 subjects from the 1000 Genomes Project (phase
1 release 3) as the reference panel and ~6 million SNPs
were retained for the final analysis after post imputational
QC steps (r2 > 0.3). Genome Reference Consortium Human
Build 37 (GRCh37/hg19) was used to map variants.
Population stratification analysis (implemented in EIGEN-
STRAT using EIGENSOFT software version 5.0.2) [17] on
the pooled dataset identified 19 significant (P < 0.05)
eigenvectors, showing significant association with the
country of recruitment. Informed consent from the study
participants and approval from the IARC Institutional
Review Board (IARC Ethics Committee) was obtained.

SNP selection

Sexually dimorphic SNPs could have (i) a concordant effect
direction (CED), if the association is present (i.e., sig-
nificant after multiple testing correction) for one sex and
nominally significant and directionally concordant for the
other, (ii) single sex effect (SSE), if the association is pre-
sent for one sex only, or (iii) opposite effect direction

(OED), if the association is present for one sex, at least
nominally significant and in opposite direction for the other
sex [16]. Previous studies on sex-specific genetic associa-
tions indicated that sex-specific scans had a higher prob-
ability to select SNPs with CED or SSE signal, while sex-
interaction scans had a higher probability to select SNPs
with OED [16]. Therefore, in the discovery phase, we
conducted both sex stratified and sex interaction scans. For
the sex-stratified analysis, a log-additive model using
unconditional logistic regression adjusted for age, study and
the significant eigenvectors were used to identify associa-
tions. For the sex interaction analysis, a regression model
including the main effects of the genotypes, sex, covariates
and an interaction term for genotypes and sex was used to
detect association. We applied a false-discovery-rate (FDR)
approach separately for male and female datasets to account
for multiple testing and the difference in sample size. This
allows the stratified study design of the discovery stage to
be less stringent in identifying hits, while keeping the
stringency of conventional Bonferroni cutoff in the com-
bined (discovery+ replication) stage for the final inter-
pretation of results. FDR q-value cut offs of 5 and 30%
were used to detect significant and suggestive SNPs
respectively in each of the datasets. Accordingly, p-value
threshold of 1 × 10−6 and 4 × 10−6 was considered to be
significant (5% FDR) and p-value threshold of 1.1 × 10−5

and 5 × 10−5 was considered suggestive (30% FDR) for
female and male datasets respectively. In addition to the
significant and suggestive sex-specific p-values, a nomin-
ally significant (P < 0.05) sex interaction p-value was taken
into account in order to identify SNPs showing sex differ-
ence. The same FDR cut-offs were used to detect significant
and suggestive signals in interaction tests (Supplementary
figure S1). All association analyses were conducted using R
statistical software version 3.3 implemented in high per-
formance computing cluster. In addition, a clear LD cluster
(atleast one correlated SNP with r2 > 0.5 within 1Mb win-
dow) for the SNP was also considered as a criterion to avoid
false positives. Among multiple SNPs in LD (r2 > 0.8, with
LD-window of 1Mb) showing an association, we choose
the one with the lowest missing rate and p-value. All
regional LD plots were generated in LocusZoom using
genome build hg19 and 1000 Genomes EUR as LD popu-
lation [18]. To focus on common SNPs and to avoid
spurious association, as a QC step we removed the SNPs
having MAF < 0.05 and without LD cluster (supplementary
figure S2),

In-silico replication and joint meta-analysis

In-silico replication of the top hits from the discovery phase
was conducted using 3660 cases (1399 women, 2261 men)
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and 7427 controls (1575 women, 5852 men) from two
previously published National Cancer Institute (NCI,
Bethesda, Maryland, USA) and one MD Anderson Cancer
Center (MDA, Texas, USA) RCC GWAS scans genotyped
using OmniExpress, Omni2.5, HumanHap 550, 610 and
660W beadchip arrays. Quality control and genotype
imputation was done as described previously [8, 9, 12]. For
each study, sex-stratified and sex-interaction models for all
significant and suggestive SNPs were tested assuming a log-
additive model of genetic effects using unconditional
logistic regression with adjustment for age, study centre,
and significant eigenvectors. The odds ratios and 95%
confidence intervals per SNP from each study were meta-
analysed using fixed-effect models implemented in
GWAMA [19], to get the combined estimates from the
replication series. We also performed a joined meta-analysis
of results from the discovery and replication series on 8061
women and 16,256 men to get the combined effect esti-
mates of the tested SNPs. Heterogeneity in genetic effects
across datasets was assessed using the I2 and Cochran’s Q
statistics.

Expression QTL analysis of the selected SNPs

To identify gene regulatory effects of the 17 identified
SNPs, we examined transcript expression near each of the
SNPs in 101 tumour adjacent normal and 259 tumour
kidney tissues in women and 178 tumour adjacent normal
and 385 tumour kidney tissues in men. All of these kidney
samples were part of the discovery GWAS study (112 from
first IARC GWAS and 532 samples from second IARC
GWAS) and the eQTL analysis was performed on matched
gene expression and GWAS datasets. Expression analysis
was conducted using Illumina HumanHT-12 v4 expression
BeadChips (Illumina, Inc., San Diego), normalised using
variance stabilising transformation (VST) and quantile
normalisation. Out of the 17 transcripts, 12 transcripts in
normal samples and 14 in tumours were expressed in <10%
of the samples. Expression for MIR4472-1 was not avail-
able for both tumour and normal samples in our dataset.
For the few transcripts showing sex-difference in expres-
sion in our dataset, we also downloaded raw counts of
RNA-seq data from 60 normal and 459 tumours from
TCGA kidney renal cell carcinoma (TCGA-KIRC) and
used as a validation cohort. For eQTL analysis, additive
linear models were used to test the association between
each transcript and SNP with age, country, tumour stage
and grade as covariates. All transcripts with expression in
<10% of the samples were filtered out from eQTL analysis.
All available transcripts mapping to each SNP were
evaluated, and FDR adjusted p-value < 0.05 using
Benjamini–Hochberg procedure was used as statistical
significance threshold. All probes overlapping SNPs with

European-ancestry having MAF > 0.01 were filtered out.
Colocalization of GWAS and eQTL signals were analysed
used eCAVIAR software [20].

Results

In the discovery phase, sex-specific analysis identified an
excess of SNPs with association p-values <0.05. However,
only a few loci could reach the significant (5% FDR) or
suggestive (30% FDR) association thresholds, among which
only 4 loci in women and 7 in men attained Bonferroni
genome-wide significance threshold (P < 5E-08) (Fig. 1).
The association quantile-quantile plots indicated little
inflation for both the datasets (λfemale= 1.02, λmale= 1.04;
supplementary figure S3a, b). Following MAF and LD
based QC, a total of 17 sex-specific SNPs (6 significant and
11 suggestive) were selected for follow-up. Among the 17
SNPs, 15 were single sex-specific signals (SSE) and the 2
other SNPs namely, rs4903064 and rs6554676 showing
CED were strongly associated in women and nominally in
men (Supplementary table 2). Among the 15 single sex-
specific signals, 7/15 associations were male-specific,
whereas, 8/15 SNPs were female-specific (Supplementary
table 3). The strongest association was observed for
rs4903064 in females (ORfemale= 1.47 [95% CI=
1.33–1.62], Pfemale= 9 × 10−14 compared with ORmale=
1.09 [95% CI= 1.01–1.19], Pmale= 0.02; Pinteraction= 1.7 ×
10−5, Table 1) at 14q24.2 mapping to an intronic region of
DPF3 (Fig. 2). Other significant SNPs in discovery series,
rs2121266 at 2p21, rs12930199 at 16p13.3 and rs1548141
at 3q11.2 mapped to the intronic regions of EPAS1,
RBFOX1 and OR5H6, respectively. Significant SNPs
rs10484683 and rs78971134 mapped to intergenic regions
at 7p22.3 and 6q24.3, with the nearest genes being BTBD11
and SAMD5, respectively. For rs78971134 (SAMD5) the
minor allele frequencies were similar for male and female
cases. Regional LD plots for each of the loci are detailed in
Supplementary Figure S4 (a) and (b). In contrast, the sex-
interaction scan did not identify any SNP even at 30% FDR,
except for the very rare variant rs141939233
(NC_000003.11:g.94783768 C > G, MAF= 0.001, P=
9.83 × 10−8) which did not meet the inclusion criteria for
SNPs (MAF > 0.05) and hence, no SNP could be carried
forward (Supplementary figure 5a, b). Overall, all putative
variants showed either CED or SSE and no SNP with an
OED could be identified from the analysis.

In the in-silico replication of the 17 selected SNPs, only
rs4903064 (at DPF3) independently replicated with stron-
ger and significant (p < 0.05) effect in women compared
with men (ORfemale= 1.24 [95% CI= 1.07–1.42], Pfemale=
3 × 10−3 compared with ORmale= 1.09 [0.98–1.21], Pmale=
0.09). In addition rs147304092 (BBS9), rs13027293
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(STEAP3), rs6554676 (SLC6A18) showed nominally sig-
nificant association with RCC risk for either men or women
in the follow-up series (Table 1).

In the joint meta-analysis of the discovery and replication
series for the selected 17 SNPs, a total of 4 SNPs attained
genome-wide significance (Table 1). In addition to the
consistent findings for DPF3, we found a stronger asso-
ciation for males for EPAS1 but with significant study
heterogeneity in the female dataset. Two additional SNPs
that reached genome-wide significance in the joint meta-
analysis were rs10484683 at SAMD5 and rs78971134 near
BTBD11 showing an association with risk for men but not
women (Table 1). The results of replication and final meta-
analysis of all the 17 SNPs are listed in supplementary
table 3.

We also examined sex-specific expression of genes
corresponding to the selected SNPs using expression data in
normal and tumour kidney tissues from a subset of the
discovery cohort. Significant sex-difference in expression
was detected for BTBD11 gene in normal tissues and also a
higher expression of SAMD5 in tumour tissues of women
(Supplementary table 4). We replicated the findings for sex
difference in expression between men and women for
SAMD5 in TCGA KIRC cohort and also observed sig-
nificant differential expression between tumour and normal
samples (Supplementary figure 6). We further tested the

effect of the identified SNPs on expression of nearby genes
by detecting cis expression quantitative trait loci (eQTL) in
kidney tissues. No significant eQTL was identified for any
of the 17 SNP-transcript pairs in normal tissues (supple-
mentary table 5), but we identified rs4903064 as the lead
cis-eQTL for DPF3 expression in tumours with highest
colocation posterior probability with the GWAS signal
(Supplementary figure S7). We further examined sex-
specific cis-eQTLs and found a stronger association of
rs4903064 on DPF3 for women compared with men
(βwomen= 0.06, Pwomen= 2.69 × 10−6 vs βmen= 0.03, Pmen=
0.004, Psex_interaction= 0.03 Fig. 3). A borderline association
was also observed for rs6554676 and SLC6A18 expression
in male tumour tissues only (βmale=−0.21, Pmale= 0.05 vs
βfemale=−0.01, Pfemale= 0.94).

Discussion

We conducted the first systematic sex-specific genome-wide
association analysis of RCC and confirmed sexually
dimorphic associations for two previously known risk SNPs
on DPF3 and EPAS1 at 14q24 and 2p21, respectively. In a
joint meta-analysis of top hits using 8,061 women and
16,256 men, we also identified two additional suggestive
SNPs (rs10484683 at SAMD5 and rs78971134 near

Fig. 1 Sex stratified genome-
wide association scan in renal
cell carcinoma: Manhattan plots
of male and female specific
association P-values from the
discovery series
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BTBD11) with possible sex-specific associations – both
being associated with a risk for men, and with no strong
evidence of association for women.

The SNP rs4903064 at DPF3 gene was previously
reported to be associated with increased RCC risk in a large
GWAS [12], and our analysis confirms the previous reports of
its sex-specific association. We further provide evidence that
the association might be mediated through expression of the
gene, with the magnitude of the association between the SNP
and expression being greater for women than men. Poly-
morphisms at intron 1 of DPF3 are also associated with
increased risk of breast cancer for women of European origin,
but the SNPs were not in linkage disequilibrium with
rs4903064 [21]. DPF3 is a histone acetylation and methyla-
tion reader of the BAF and PBAF chromatin remodelling
complexes. Other components of the complexes like BAP1
and PBRM1 are frequently mutated in RCC and show sex
differences in their mutation frequency and association with
survival [22]. Chromatin-remodelling complexes regulate
gene expression and loss of these chromatin modifiers has
been associated with characteristic gene expression signatures
in RCC [23, 24]. Sexually dimorphic gene expression is
frequent in both murine [25] and human [6, 26] kidney nor-
mal and tumour tissues, and is hypothesised to contribute to
the mechanism underlying sex-difference in kidney diseases
including cancer [5, 27]. Therefore, variants of chromatin
remodelling complex associated genes might modify RCC
risk differently for men and women through sex-specific gene
expression but the exact mechanism remains speculative and
requires detailed functional studies in vitro.

The SNP rs2121266 mapping to intron 1 of the EPAS1
gene is in strong linkage disequilibrium (r2= 0.97, D′=
1.00) to the previously described risk SNP rs11894252 at
2p21 [8]. Our finding of a stronger association for men is in
agreement with previous findings of stronger associations
for the proxy SNP rs11894252 for men (ORmale= 1.18
compared with ORfemale= 1.06, Pinteraction= 0.03) in RCC.
Additionally, sexually dimorphic associations for EPAS1
variants were also observed for rs13419896 in lung squa-
mous cell carcinoma [28] and rs4953354 in lung adeno-
carcinoma [29] in two independent reports from a Japanese
population. EPAS1 (HIF2α) is a key gene in RCC and
functions as a transcription factor in the VHL–HIF signal-
ling axis [30, 31]. The intron 1 of EPAS1 contains oestrogen
response elements (EREs) and oestrogen-dependent down-
regulation of EPAS1 occurs in invasive breast cancer cells
[32]. RCC related polymorphisms near other important
genes like CCND1, MYC/PVT1 have been found on
enhancers at tissue-specific HIF-binding loci in renal tub-
ular cells [33, 34], implying a role for HIF in transactivation
of key oncogenic pathways in RCC. Although rs2121266
and rs11894252 were not eQTLs for EPAS1, it is possible
that the role of these polymorphisms in sex hormoneTa
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mediated regulation of EPAS1 and transactivation of
downstream genes may result in sex-specific susceptibility
to RCC.

Two other SNPs that reached genome-wide significance
in the joint analysis of discovery and replication series,
namely rs10484683 at SAMD5 and rs78971134 near
BTBD11 have not been previously reported to be associated
with risk of RCC. For rs10484683 (SAMD5), the sex-
specific finding from the discovery stage was driven by
MAF differences in the controls only. Hence, the result
remains unclear and might be the reason that the apparent
association did not replicate. The SNP rs10484683 was not
a significant cis eQTL in normal or tumour kidney tissues in

our series, but expression of SAMD5 varied significantly
between tumour samples from men and women. Also, a
significant overexpression of SAMD5 in tumours from
current and TCGA datasets suggests its potential role in
RCC pathogenesis. Although not previously implicated in
RCC, SAMD5 overexpression has been found to be asso-
ciated with bile duct and cholangiocarcinoma [35]. BTBD11
gene codes for an ankyrin repeat and BTB/POZ domain-
containing protein involved in regulation of proteolysis and
protein ubiquitination. Functional implications of this gene
is not well known in RCC, but SNPs near the BTBD11 gene
were previously reported to be associated with kidney
function traits [36] and diabetic kidney diseases [37] by

Fig. 2 Regional plot of the most
significant sex-specific loci:
P-values and LD among SNPs at
14q24.2 mapping to the DPF3
gene in women and men
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large genome-wide studies, however, these SNPs were not
in LD with the current risk variant rs78971134.

We confirmed sex-specific genetic associations of known
RCC risk SNPs and identified new suggestive associations
for one sex or the other. No clear pattern of an increased risk
for men or decreased risk for women could be observed in
the top sexually dimorphic SNPs, as would be otherwise
anticipated for explaining the 2:1 sex ratios. Therefore,
these SNPs are not conclusive for untangling the sex-
specific genetic susceptibility that might contribute to the
sex ratio in incidence. Due to technical constraints we could
not examine sex chromosomal associations in the current
study. Even given its large sample size, a drawback of the
study is its limited statistical power to detect subtle sex-
specific associations (SSEs or CEDs), particularly when
analysing men and women separately. A male-specific
association may simply reflect the lack of power to detect
association in women, owing to the smaller sample size for
women compared with men. To increase the power to detect
sex-specific associations, the combination of results from
different GWAS in sex-stratified meta-analyses is war-
ranted. In addition to large well powered sex-specific
genetic studies, multi-omics approaches studying both
autosomes and sex chromosomes and their interaction with
sex hormones might help to unravel the endogenous causes
of sex bias in sexually dimorphic traits and diseases
like RCC.

Data availability

Genome-wide summary statistics are made available
through the NHGRI-EBI GWAS Catalog https://www.ebi.
ac.uk/gwas/downloads/summary-statistics. Data from the
first IARC GWAS scan included in the study are available
from Paul Brennan upon reasonable request. The data from

second IARC scan are accessible on dbGaP: (phs001271.
v1.p1). The first and second NCI scans are accessible on
dbGaP (phs000351.v1.p1 and phs001736.v1.p1 respec-
tively). Data from the MDA scan is available from Xifeng
Wu upon reasonable request.
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